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Palavras-Chave

Resumo

Navegacdo Robdtica Movel; Aprendizagem por Reforgo; Estrutura
Hierdrquica; Q-Learning; Ambiente Tipo Labirinto

H34 um interesse crescente no desenvolvimento de tecnologias de servicos
e robss de assisténcia para aplicagdo em ambientes domésticos e urbanos.
Entre as habilidades necessarias estdo navegacao auténoma e manutencdo
de seguranca. O Machine Learning fornece um conjunto de ferramentas
computacionais que se mostraram Uteis para a navegacao de robots, como
redes neuronais, Reinforcement Learning e, mais recentemente, Deep Learn-
ing. Esta dissertacdo tem como objetivo investigar o problema da navegacao
de um robot mével num labirinto utilizando Reinforcement Learning. Em
particular, o trabalho concentra-se em dimensionar o Reinforcement Learn-
ing, e o Q-learning em particular, para um problema do mundo real usando
um robot fisico. Primeiro, para evitar grandes espacos de estado-agdo, o
sistema robédtico é treinado usando uma abordagem hierdrquica na qual
componentes de baixo nivel (sub-tarefas) sdo sequenciados num nivel su-
perior. Em segundo lugar, uma funcdo de reward consistente é projetada
para a navegacdo do robd num corredor e num canto, fornecendo ao robot
mais informagdes (conhecimento prévio) apds cada agdo. As experiéncias
conduzidas, utilizando um robot simulado e real, mostram a viabilidade da
abordagem hierdrquica reduzindo a complexidade da tarefa de aprendizagem
e o papel da fungao de recompensa na especificacdo de um objetivo. Final-
mente, o estudo providencia uma avaliacdo detalhada sobre a experiéncia
transferida de simulagdo para o robd fisico.
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There is a growing interest in the development of service and assistive robot
technologies for application in domestic and urban environments. Among
the required abilities are autonomous navigation and safety maintenance.
Machine Learning provides a set of computational tools that have proved
useful for robot navigation, such as neural networks, reinforcement learn-
ing and, more recently, end-to-end deep learning. This dissertation aims
to investigate the problem of mobile robot navigation in a maze-like envi-
ronment using a reinforcement learning framework. In particular, the work
focuses on how to scale reinforcement learning, and Q-learning in particu-
lar, to a real-world problem using a physical robot. First, in order to avoid
large state-action spaces and long horizons, the robot system is trained us-
ing a hierarchical approach in which low-level components (sub-tasks) are
sequenced at a higher-level. Second, a dense reward function is designed for
robot navigation in a corridor and moving around a corner, providing the
robot with more information (prior knowledge) after each action. The exper-
iments conducted, using a simulated and a real robot, show the feasibility
of the hierarchical approach in reducing the complexity of the learning task
and the role of the reward function in goal specification. Finally, the study
provides detailed evaluation about transferring experience in simulation to
the physical robot.
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Chapter 1

Introduction

1.1 Background and Context

Technology is in constant evolution, being that in the last decades its growth is largely expo-
nential. Everything around us has become simpler thanks to advances with technology in in-
dustry, agriculture, health and even in our lifestyle. Our grandparents and great-grandparents,
at their youngest age, did not have the privilege of having a television at home, the internet
or even a personal cell phone. This temporal difference between then and now serves as a
reminder of how prevalent technology is in our lives today, more often than before, the words
Artificial Intelligence (Al and Machine Learning (MLI) are heard as they contaminated the
media. There are self-driving cars, robots that perform tasks without any supervision that
were previously performed by humans and even mobile robots that can navigate in a real
environment without colliding with the environment.

A human being has an extreme need to know how he/she thinks and how he/she acts in
a thoughtful way. AT tries to understand and build intelligent entities [I]. Human intelligence
is mimicked by a machine that, through learning processes and taking into account the in-
formation acquired, is able to approximate the behavior of its counterpart. The tasks most
studied by AI include voice recognition, autonomous driving, medicine, space exploration and
finance. In the 1950s a generation of mathematicians and scientists brought Al to life. One of
them, the famous British mathematician Alan Turing proposed that just as the human being
was able to make decisions and solve problems, maybe the machines could do it too [2]. After
70 years, Al is present in almost everything around us and only the future will know what is
more to come.

[MI] is a branch of Artificial Intelligence that uses algorithms which allows one to cre-
ate mathematical models through acquired information to improve predictive and decision-
making power without the computer being explicitly programmed to accomplish this task.
As defined by T. Mitchell, “The computer program is said to learn from experience and with
respect to some task T and some performance measure P, if its performance on T, as mea-
sured by P, improves with experience E.” [3]. Machine Learning is often divided into three
categories: Supervised and Unsupervised Learning and Reinforcement Learning.

In Supervised Learning, it is given a training set with labeled data that divides the totality
of data into different categories. This is used for classification or regression problems, with
each entry having n features and the corresponding label. A classification problem is intended
to identify an input value as belonging to one of the output classes. Suppose for example that



the dataset is composed of correctly labeled images of dogs, cats and rats. After training
and receiving new input, the algorithm should be able to know what animal each image is.
A regression problem outputs a real value, and not a class, aiming to get a forecast given a
certain input value. This is widely used, for example, to predict real estate prices, weather
forecast, et cetera. Unsupervised Learning intends to create a model capable of predicting
the category to which an example corresponds, receiving a training set without labels. More
specifically, the information is not previously divided and the algorithm, taking into account
the features of each example, groups them. This branch of Machine Learning is widely used
in market/consumer segmentation for example.

Reinforcement Learning (RL) can be considered another branch of ML that does not
require previous data, instead using its experience to explore the environment to produce the
best end results. Consider, for example, attempting to train a mobile robot to reach a goal
when navigating a maze-like environment. The process ends up being simple: an agent intends
to reach a goal where the path to it is totally unknown using actions previously carried out.
Upon performing the actions for the first time, the agent creates many paths to the goal which
form a map of the environment with all the states and the best actions to follow in each of
them. The agent is then able to use those previously completed actions and discern which
path will result in the entire task being completed with the maximum possible reward. In
other words, a RL framework requires that the programmer specifies WHAT to do and the
robot learns HOW to perform the task by trial-and-error interaction with the environment.

This dissertation focuses mainly on the latter example: a hierarchical reinforcement learn-
ing approach will be used to allow a mobile robot to navigate autonomously in a maze in
order to reach its end without colliding with the environment and choosing the optimal path
to the goal.

1.2 Motivation and Objectives

This work deals with the problem of mobile robot navigation in a real-world maze-like en-
vironment using a Reinforcement Learning approach. The particular focus of the work is to
analyze a simple case in some detail to demonstrate how Reinforcement Learning can be ap-
plied to solve a real-world problem. Reinforcement Learning is a computational approach that
enables a robot agent to find an optimal behavior through trial-and-error interaction with the
environment. However, applying RL to robotic problems is, generally, a difficult problem with
many challenges [4].

The main challenges in robot RL include coping with large state-action spaces and long
horizons, sample inefficiency given that learning a policy may need an impractical number of
interactions (reducing often its application to simulation), the difficulty to specify a reward
function that exactly capture the problem at hands, the occurrence of local optima and the
difficulty to escape from them, the need for parameterized function approximators (e.g., neural
networks) in order to generalize between similar situations and actions, mainly in case of large,
complex, high-dimensional environments.

A promising approach to reduce the complexity of the learning task is to hierarchically
decompose the problem into basic sub-tasks which are coordinated by a higher level. In this
context, Hierarchical Reinforcement Learning (HRLI) seems to be particularly well-suited for
navigation in a maze in order to reduce the search space and speed up the learning process.
HRL switches some complexity of the navigation task to a lower-level of functionality, where



local policies are required to learn simple sub-tasks such as moving in a corridor, getting
around a corner or crossing-a-door. These locally learned policies will then be selected by a
higher-level policy in order to achieve the specific goal. Hopefully, they can also be reused
to more complex tasks and/or adapted to new situations. Although a faster learning can
be expected, a robotic simulator will assume a key role at the programming environment for
developing the robot behavior, such that the algorithms is tested under numerous reproducible
conditions.

Having this in mind, the main objectives of this dissertation can be described as follows:

e To develop the hardware and software infrastructures required to operate the mobile
robot in a real maze environment.

e To investigate how the introduction of hierarchy into the problem can contribute to
make the navigation task tractable.

e To evaluate the possibility of transfer the experience gained in simulation to a real robot
navigating in a similar maze environment.

1.3 Dissertation’s Structure
This master dissertation is composed of six chapters, including the introduction:

e Chapter 2 describes the related work previously done using Reinforcement Learning,
focusing on the hierarchical approach in mobile robot navigation as well as a theoretical
background of the Reinforcement Learning.

e Chapter 3 describes the experimental setup of both the Hardware (robot, sensors and
communication module) and Software (IDEs, ROS, Simulator) used during this master
thesis.

e Chapter 4 presents the methodology proposed to solve the problem at hand is depicted.
It is described the division of the maze in sub-tasks, the algorithm used and the hierar-
chical approach using a topological map.

e Chapter 5 shows the experiments made and the results obtained in each one of the
sub-tasks and how the whole maze is used in both simulation and the real environment.

e Chapter 6 presents the conclusions of this thesis and the future work related to the
scope of this work.






Chapter 2

Theoretical Framework

Over the years, robotics has become a very challenging case study and previous thought
was that it would be possible to teach a robot to do activities a human being can; mainly
repetitive day-to-day activities where a robot could replace the human being. Instead, the
idea of a completely autonomous robot is not something that is possible in the present, nor
do we know if it is would be a beneficial vision for human beings. Machine Learning, as a
field of Artificial Intelligence, is one of the main techniques in the learning process within
robots to increase their autonomy. It is already possible to see car companies with cars able
to function using auto-pilot thanks to Machine Learning and Computer Vision [5]. It is used
in many fields, especially robot vision [6, [7], mobile robot navigation [8, 9] and medical and
surgery application [I0]. A robot can learn from the information given by a dataset, known
as Supervised and Unsupervised Learning, or can learn through the experience obtained with
the interaction with the environment, Reinforcement Learning.

This chapter summarizes the research conducted at the beginning of this dissertation with
the objective of gaining insight into Reinforcement Learning, mobile robotic navigation and
the state of the art of model free and model based methods as well as the hierarchical approach
to reinforcement leaning.

2.1 Mobile Robot Navigation

A robot is an autonomous system that always has a main objective and to act requires
sensory information that allows it to correctly fulfill these objectives. Navigation is the ability
to understand the current position and to be able to plan a path towards some goal location.
It is indispensable for the mobile robot to always know where it is in the environment to know
what action to take. Navigation can be defined by a set of blocks (Fig.

Leonard and Durrant-Whyte divided the problem of mobile robot navigation into three
central points [11]:

e Where am 7 - addresses the problem of robot location. Through sensory information
it is possible to infer the location, or a restricted set of locations, where the robot can
be found.

e Where I am going? - addresses the problem of mapping. When the robot navigates
through unknown zones, it can create a map of the environment using the information
that the sensors offer.
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Figure 2.1: Building blocks of mobile robot navigation.

e How do I get there? - addresses the problem of path planning. The robot aims to move
from a position of the environment to its destination and for this you need to plan your
route in the best possible way.

In order for a robot to navigate, it needs a set of elements:
e A mechanism that allows it to move around the environment.
e Sensors for information about its surroundings.

e A system where the information received by the sensors is processed and where the
action to be taken is chosen.

e A system that allows controlling the wheels in order to perform the actions.

2.1.1 Mobile Robots

Mobile robots have the peculiarity of being able to move around unknown environments using
a locomotion mechanism such as a pair of wheels, a set of legs or propellers. It is a system
with mobility, a certain level of autonomy and perception of the environment. Within mobile
robots there are three main groups:

e UGV - Unmanned Ground Vehicles that consist of wheels, tracks or legs - These vehicles
are widely used for the transportation of material in agriculture, making it possible
to harvest and regulate concentrations of chemicals such as sulfates and herbicides in



plantations. They are also commonly used by military services in rescue missions, fires,
mine detection and detonation, and also in war scenarios to reduce military contact
with the enemy reducing the number of casualties. Another application of these vehicles
is the space exploration where companies like NASA built autonomous vehicles to be
sent in the expeditions in order to know more about the properties of the other planets

and moon [12, [13].

Figure 2.2: MTGR (left) and Talon Swords (right) - Lightweight Combat Proven Tactical
Robot.

e UAV - Unmanned Aerial Vehicles - These vehicles are widely used by the military
in reconnaissance and surveillance missions and anti-terrorism campaigns, as well as
attacks on the enemy. They are also used in the distribution of goods by large companies,
in the filming of movies and journalistic reports, in agriculture and in the resolution of
disasters such as fires and earthquakes [14] [15].

Figure 2.3: MQ-1 Predator - Military service (left) and Amazon Prime Air - Delivery
System (right).

e AUV - Autonomous Underwater Vehicles - These vehicles are widely used to make deep
sea expeditions to find new marine species or debris from ships or aircrafts that may have
sunk/crashed and to obtain sensory information such as pH and the presence or absence
of light, for example. They are also commonly used by companies in the oil industry to
create maps of the oceanic surface before the construction of the infrastructure and by
the military in missions of surveillance and reconnaissance and mining countermeasures

for example [16), [17].



Figure 2.4: Pluto Plus - countermining (left) and WHOI SeaBED - collect sonar and optical
images of the seafloor (right).

2.2 Reinforcement Learning

[RI] is a branch of Machine Learning with a somewhat different concept from the other ap-
proaches. The agent of the problem is constantly moving and producing actions. This causes it
to create interactions with the environment by trial and error, receiving feedback as a reward
from these actions. The main objective of the agent is to reach the goal using the minimum
number of possible actions while gaining the maximum reward possible. This reward may or
may not be immediate, and the possibility of obtaining a delayed reward in conjunction with
the trial and error approach is what makes Reinforcement Learning so special.

It is expected that during the learning of a task, the agent will often fail at the beginning
stages. As the interaction with the environment increases, the behavior improves. This pro-
vides the opportunity at the end of the learning process to perform the task without errors
following the policy that generates the correct action for each moment.

Reinforcement Learning can be seen as an analogy to our lives as humans. At birth, we
basically have no knowledge and do not know how to perform all tasks that life puts before
us. However, with the passage of time and experience, we are able to act according to the
problem that we have to overcome. Similar to a human being, a robot can also learn with
the help of Reinforcement Learning, requiring only a mean that makes it possible to collect
information from the environment. The theoretical framework for reinforcement learning is
based on the book by Richard Sutton and Andrew Barto [1§].

2.2.1 Elements of Reinforcement Learning

The main elements of reinforcement learning are the agent and the environment but these
alone do not give results for the task to be performed, so there are four sub-elements that
must be present: a policy, a reward signal, a value function and a model of the environment.

e The policy shows the action the agent must perform, given the state the agent is in
within the environment, producing a map of the environment with all the existing
states and the corresponding action that produces the best result. It is, ordinarily, a
stochastic process.

e A reward signal is what defines the purpose of a reinforcement learning problem. At each
new iteration, the agent receives a reward from the environment after the action, and



the purpose of the agent is to maximize the sum of rewards for each episode. This reward
shows the agent whether the action taken is good or bad in relation to the ultimate goal.
The analysis of these rewards is what builds the policy, which throughout the episodes
is changed so that in the end it corresponds to the optimal policy.

A value function of a state is the expected sum of rewards that the agent can expect
until the goal starting in that state.

The last sub-element is the environment model, which allows replication of the environ-
ment and the extraction of important information about behavior. A template is used
in particular in the planning phase, which assists in the decision making of a next action
or reward. Within the models are two distinct types: model-free which are basically trial
and error and model based methods that use models and planning.

2.2.2 Markov Decision Processes

Markov Decision Processes (MDPJ)s are a bridge to solving a reinforcement learning problem
that are defined by:

An environmental state, S; € S, where S designates the state space.
The action, A; € A, where A designates the action space.
A numerical reward, Ry11 € R C R.

The state transition probabilities, that show what is the probability being in State S;
and applying action A; to go to new state s’.

p(Sl,’I"|S,CL) = P?"{St = S,7Rt = 7/“‘S’tfl = S,Atfl = CL} (21)

The reward function for state-action-next state triples as a three-argument function
r:SxAxS — R.

s',rl|s,a)
r(s,a,8") =E[R|Si—1 = 8,441 = a,S; = Z 2 ’|£! a) (2.2)
re€R

The MDP framework then proposes that a problem with a given objective be reduced to
three signals between the agent and the environment: actions taken by the agent, possible
states and rewards (Fig. [2.5).

| Agent |

state reward

S, R,
R\
_S.. | Environment

Figure 2.5: The agent-environment interaction.
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2.2.3 Policy and Value Function

A policy gives the agent the probabilities, in each state, of selecting the possible actions. This
policy is constantly changing during the tests. The value function of a state under a policy
7, designated v, (s) is the expected return when starting in state s and using 7.

vr(s) = En [Gt|st = S} =E, [ZWkrtJrkJrl’St = S}
k=0 (2.3)

= Zw(a|s) Z Zp(s’, r|s,a) [r + VE[Gi4+1]St41 = s’]]

ve(s) = m(als) > p(s',rls,a)[r + yvx(s'), Vs € S] (2.4)
a s'r
The equation [2.4] is the Bellman equation for the policy value function. There is also an
action value function under a policy 7, designated ¢ (s,a) that shows the expected sum of
rewards while taking action a in state s.

Gr(s,a) = E [Gt]St =s5,A; = a] =E, [Z’ykrt+k+1|5t =354 =a (2.5)
k=0

Where G; is the return, that is, the sum of the rewards.
o]
Gt =ree1 +yreps + 727“t+3 +..= Z'Ykrt+k+1 (2.6)
k=0

As MDP is normally used for finite cases, each interaction between agent and environment
has a final state, which shows the moment when the agent reaches the goal. Each time the
agent reaches the target, a new episode begins, resetting the position by sending the agent to
an initial state. -y is the discount rate, value between 0 and 1, which quantifies the difference in
importance between immediate and future rewards. If v is a value near 1, the future rewards
are taking more seriously. If v = 0, the agent takes into account only the immediate reward.

2.2.4 Optimal Policy and Optimal Value Function

When the return of a policy 7 is greater than or equal to that of a policy n’ in all states
this policy is called an optimal policy. There is the possibility of a set of optimal policies,
7, however they all have the same state-value function, defined as v, and the same optimal
action-value function, defined as g..

v(s) = max vr(s),Vs € S. (2.7)

g«(s,a) = maxgr(s,a),Vs € S A a € A. (2.8)

The value function, v, needs to satisfy the conditions of the Bellman equation, Being
the optimal value function does not need to specify the policy that concerns, giving itself the
name of Bellman optimality equation. This equation, [2.10] shows that the value of a state
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must be equal to the expected return for the best action in that state for the optimal policy
case:

vi(s) = ax r.(s,a)

= maxE,, [Gt|St =s,A = a]

(2.9)
= m(?XEm [Ri1 +7Gi41| St = 5, Ay = a
= mngm [Res1 + 70s(Se41)| S = 5, Ay = a
= max Zp(s', rls, a)[r + yve(s')] (2.10)

s'r

It is also possible to demonstrate the Bellman optimality equation for the optimal action-
value function:

Q*(&a) = E[Rt-i-l -i-’yH}lE}Xq*(St_i_l’a/)‘St — 5 A = a]
= ZP(SI:T|37G) [T+’yms}xq*(s',a’)] (2.11)

s'r

The Bellman optimality equation in finite MDPs has only one solution that is policy
independent. Having n states, there are in fact n equations with n unknowns. If the state
transition probabilities, p, are known it is possible to solve the system of equations in the case
of v, and consequently to g.

It is simple to find the optimal policy from vy, since it follows a greedy approach to the
optimal value function v,. The optimal policy chooses the action to be taken, taking into
account the consequences in the near future. However, as the optimal value function takes
into account the whole process, the optimal policy works in the long term as well.

It is also possible to choose the optimal actions through the optimal action-value function,
gx, being an even simpler process because it is not necessary to do a one-step-ahead search
for a state. It is only necessary to know which action maximizes ¢ (s, a). Thus, the optimal
action-value function provides the ability to find the optimal action without knowing anything
about the previous states, that is, about the dynamics of the environment.

2.3 Solution Methods

Model-based methods acquire information on the probability transitions to generate a model,
which is used to plan the future iterations. Unlike the model-free methods, the duration
of interaction with the real environment during the learning phase is very small since after
the creation of a model the whole learning process can be done in simulation. Although
accelerating the learning process, the use of this method may not be convenient since it can
provide inaccurate results if the model is not well constructed and it is also a method with a
very high computational level.

Model-free methods do not require an environment model to perform their function, learn-
ing the optimal policy solely by interacting with the environment. The agent performs an
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action and receives a reward from the environment that can be positive or negative, and the
goal is to select the actions that give the the highest cumulative sum of reward. Over time,
the agent will explore the environment and learn the best action to take in view of the state
in which it is. The best-known model-free methods are divided into two strands: Monte Carlo
Methods and Temporal Difference Learning which will be explained below.

2.3.1 Dynamic Programming

In order to calculate a value function using Dynamic Programming it is necessary to have a
model of transition probabilities T(s’,a,s) and the reward function R(s,a). This information
makes it possible to calculate the value of a state using the expectation of the next reward
and the next value. In simple problems, Dynamic Programming can provide the exact so-
lution of the value function using an iterative approach, however due to its extremely high
computational cost it is rarely used because it requires a perfect environment model. In most
cases it only gives exact solutions to problems with discrete state space and action spaces.
The most well-known algorithms within the Dynamic programming branch are policy iteration
and wvalue iteration.

In 1957, Bellman showed that these methods could be applied to a lot of problems coined
it Dynamic Programming [19].

2.3.2 Monte Carlo Methods

Monte Carlo methods only need experience, interacting with the environment throughout the
learning process. This learning is divided into episodes, each episode ending in the arrival of
the agent to the goal and only then is the policy and the function of value is estimated.

These methods follow the GPI (generalized policy iteration) scheme, allowing evaluation
and improvement of policy. Instead of using a template to calculate the value of each state,
it does the average of returns that started in that state. In order to obtain a reliable optimal
policy in a simulated environment it is necessary for each episode to begin learning at a
random position so as to have sufficient information for all state-action pairs. If it is in a
real environment and this random start is not possible there are two possibilities, On-Policy
Monte Carlo Control and Off-Policy Monte Carlo Control. The difference between the two is
that, in the case of the On-Policy method, the agent is constantly exploring the best possible
policy, while in the Off-Policy method the agent explores and at the same time learns an
optimal policy different from the one use.

2.3.3 Temporal Difference Learning

Temporal-Difference Learning is a combination of the Dynamic Programming and Monte
Carlo methods, since it does not know the dynamics of the environment by learning only
through the experience gained by interacting with it as well as in the Monte Carlo method and
updating estimates of the value function based on other estimates as in the case of Dynamic
Programming. Basically the agent chooses an action according to a policy interacting with
the environment. When looking at the new state updates the value of the current state taking
into account the learning rate factor, «, as shown in Equation [2.12]

V(s¢) <= V(sy) +alripr +v % V(sepr) — V(s)] (2.12)
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TD-Learning has certain advantages over Dynamic Programming and Monte Carlo meth-
ods. Compared to Dynamic Programming, it does not require an environment model gaining
only experience through visits to the possible states. It is also more advantageous than the
Monte Carlo Methods because learning is done online and does not require the end of an
episode to estimate the value function.

The most well-known algorithms in this field of Reinforcement Learning are Q-Learning
and SARSA and as this approach will be used throughout this dissertation both will be
explained in more detail.

Q-Learning

Q-Learning is one of the best-known and discussed methods of Reinforcement Learning being a
model-free off-policy temporal difference method. It was idealized and introduced by Watkins
in 1989 [20] and in 1992 it was rigorously proven by Watkins himself and Dayan [21]. This
method allows the agent to learn to act optimally by experiencing the consequences of actions
without having to create a map or model of the environment and is defined by the following
equation:

Q(s1, 1) = Q(sp,ar) + a|re1 +ymax Q(set1,a) — Q(st, ar) (2.13)

The action-value function, Q, is a direct approximation of the optimal action-value func-
tion, g4, being totally independent of the policy followed allowing a very fast convergence
through a simple algorithm. In Q-Learning the policy is used to determine the state-action
pairs that are visited and updated. This update allows for correct convergence.

Algorithm 1 Q-Learning Algorithm.
1: Initialize Q(s,a) arbitrarily
2: repeat {for each episode}
3:  Initialize s

4:  repeat {for each step of episode}
5 Chose an action, a, from the state, s, using policy derived from Q (e.g. e-greedy);
6: Take action, a, and observe reward, r, and state, s’
7 Q(s,a) < Q(s,a) + afr + v+ mazQ(s',a') — Q(s, a)]
a
8 s+ s

9:  until s is terminal
10: until maximum episode

SARSA (State-Action-Reward-State-Action)

SARSA is a model-free on-policy temporal difference control method. It was first introduced
by Rummery and Niranjan in 1994 under the name of modified Q-Learning [22] and later
Sutton gave it the name SARSA [23]. It is a method very similar to the method of Q-Learning,
but the difference is that the maximum reward for the next step is not necessarily used to
update the value of Q and the new action and reward is selected again through the policy
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initially used (e.g. e-greedy). The action-value function in this method is:

Q(st,ar) < Q(sp,a) + a|rip1 +7YQ(St41, A1) — Q(5¢, ar) (2.14)

The name SARSA comes from this quintuple @(s,a,r,s’,a’) that allows the agent to per-
form the update, where s and a are the original state and action, r is the reward observed,
s’ and a’ is the new state pair-action.

In an on-policy method, the action-value function Q™ is continuously estimated for be-
havior policy 7, changing this policy at the same time in order to choose the best action. The
convergence of this method depends on the nature of the policy’s dependence on Q, being
e-greedy or e-soft for example. As state-action pairs are visited endlessly and policy converges
towards a greedy policy, SARSA converges for optimal policy and action-value function.

Algorithm 2 SARSA Algorithm.
1: Initialize Q(s,a) arbitrarily
2: repeat {for each episode}
3:  Initialize s
repeat {for each step of episode}
Chose an action, a, from the state, s, using policy derived from Q (e.g. e-greedy);
Take action, a, and observe reward, r, and state, s’
Chose an action, a’, from the state, s’, using policy derived from Q (e.g. e-greedy);
Qs,a) + Q(s,0) + alr + 7+ Q(s', ) — Q(s, a)]
s+ 85 a <+ d;
10:  until s is terminal
11: until maximum episode

2.4 Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning is an area of Reinforcement Learning that allows the
division of a problem into sub-tasks, making it simpler to solve.

The normal Reinforcement Learning has a set of problems in complex real world domains
such as:

e Curse of dimensionality due to the great number of states and actions increasing the
learning time.

e Generalization problem - if the observation space is continuous, the agent cannot visit
every state to find the optimal actions for those states.

e Exploration vs Exploitation problem - The agent needs to choose whether it is a moment
of explore to new states or to choose the best action to lead him to the objective. The
balance between these two is a challenge for tasks with a high number of states and
actions where the computational time is a factor at stake.

Hierarchical Reinforcement Learning can be used to beat these challenges, deconstructing
a task into sub-tasks easier to solve. This method has many advantages like:
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e Policies learned in each one of the sub-tasks can be reused.

e Value functions can be shared between sub-tasks, accelerating the learning process of a
new sub-task.

e State abstraction can be applied, allowing a system to ignore irrelevant details to the
task reducing complexity, time and resources spent on learning.

Most of the algorithms used in the Hierarchical Reinforcement Learning field are based
on Semi-Markov Decision Processes (SMDP]). The SMDP is a variant of the Markov Decision
Process where the abstract actions can take random time-steps to complete, with another
variable being necessary to terminate this abstract action. SMDPs can model continuous-
time events and discrete-time, usually treating the system as remaining in each state for a
random waiting time transitioning instantaneously to the next state at the end.

A simple type of abstraction is a “macro”, which is a sequence of actions that can be called
upon as if it were a simple action. For example a “macro” can be “Turn right at the door”
and this “macro” have a subroutine where the actions to solve this “macro” are maintained.
A “macro” is an open-loop control policy, which can be generalized as a partial closed-loop
policy where it is necessary to define a subset of the state set and have a termination condition.
This partial policy is called options [24] and with this in mind the wait time in each one of
the options becomes only its duration instead of a random number.

There are a few known approaches in Hierarchical Reinforcement Learning that will be
presented ahead: Options, HAM and MAXQ.

2.4.1 Options

Options is a framework that generalizes the primitive actions to include temporally extended
courses of actions, “macros”.
It is a triple composed by:

e Apolicyn:S5 x A— [0,1].

e A termination condition S that shows the probability of the option termination in the
given state, 8 : ST — [0,1].

e And an initiation set, I C S.

An option is available in a state if that state belongs to the initiation set and follows the
policy 7 until it reaches the termination point. If the agent is in a state s belonging to I, the
action taken has a probability of 7(s,a) and in the next state s’ the option could terminate
with probability 6 or continue. When an option ends, a new option can be selected by the
agent.

In [25], a new algorithm based on this Options framework is presented where the option is
not necessarily taken until the end of it because that may constrain the agent. The objective
is to know if at the state s;, arrived at by choosing the option o, the value Q(s;,0) to continue
with o is less than the value obtained after interrupting the option o and continue with a
new option. This method is applied in a mobile robot in an unknown environment to resolve
motion planning tasks. The robot has three options: move-to-goal, avoid obstacles and follow
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walls and it uses the Q-Learning algorithm in the learning process. The results of this project
show that the new algorithm finds a solution faster than the normal Options framework
in simple environments, however, the normal Options framework supports the definition of
flexible policies giving the capacity of better adaptation to unknown environments.

2.4.2 HAM

Parr and Russell, in 1998, developed an hierarchical approach called Hierarchies of Abstract
Machines (HAM). This technique uses the SMDP concept, but simplifies complex MDPs
restricting the set of policies instead of increasing the set of actions. HAMs consist of non-
deterministic finite state machines where the transition between states invoke lower-level
machines. This nondeterminism is represented by choice states where the optimal action is
yet to be decided or learned. To solve a problem, there can be no constrains at all but also
a full specified solution. However, a intermediate solution is normally used, leaving to the
learning algorithm the discovery of the lower-level option to take at each time [26].
The machines for HAM are defined by:

e A set of states that are composed by four types:

— Action states, which execute an action in the environment.

Call states, which run another machine as a subroutine.

Choice states, which select the next state machine nondeterministically.

— Stop states, which end the execution of the machine and return the control to the
previous call state.

e A transition function that determines the next machine state.
o A start function that determines the initial state.

HAMSs can reduce the time needed to learn a new environment, focusing on the exploration
of the state space using constraints. In [26] the authors created a variation of the model-free
algorithm Q-Learning called HAMQ-Learning that learned directly in the reduced state space
without any model transformation and compared the two of them, showing in the results that
the new algorithm learns much faster (approximately thirty times faster) than the traditional
one. These results show that constraining the set of policies considered for a MDP is possible
using the HAMs, accelerating the learning process and providing a transfer learning method
for other tasks.

2.4.3 MAXQ

MAXQ allows to decompose a main task into sub-tasks that can also be decomposed into
sub-tasks to a point where a sub-task is only composed by primitive actions as stated by
T. Dietterich in [27]. Having the task hierarchy, the goal of the MAXQ is find recursively a
optimal policy. In order to do this, the author created an algorithm called Hierarchical Semi-
Markov Q-Learning that is applied to each of the tasks simultaneously to learn the
policies. Each sub-task p has its own Q function Q(p,s,a) that describes the expected total
reward of choosing the sub-task p in an initial state s while executing the action a. MAXQ
allows to decompose value functions that HSMQ can not do.
MAXQ decomposes Q(p,s,a) into a sum of two components:
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e V(a,s) - expected one-step reward upon choosing action a in state s.

e C(p,s,a) - expected total reward upon completing the task p after a has returned.

Q" (p,s,a) =V™(a,s) + C™(p,s,a) (2.15)

If this method is applied recursively, it decomposes the Q function of the root task into a
sum of the Q values of its sub-tasks representing the value function of a hierarchical policy.
This method provides the opportunity to exploit state abstraction, ignoring large parts of the
state space.

In [28], T. Dietterich evaluates the Algorithm MAXQ-Q with and without state abstraction
against the traditional Q-Learning showing that it converges much faster to an optimal policy.
It shows that MAXQ support the reuse and sharing of a sub-task because of the decomposition
of the value function into value function for each one of the sub-tasks.

In [29], the authors created an algorithm that combines two of the frameworks already
presented: Options and MAXQ. The MAXQ framework introduces knowledge to the Rein-
forcement Learning and the Options framework creates automatically the hierarchies in a
problem of two robots collecting trash in a partially known environment. Being a multi-agent
task becomes more challenging, because if both robots are treated as a single agent, the
number of the state space and action space increases exponentially (curse of dimensionality),
and if one of the agents is treated as part of the environment, it makes the environment
non-stationary and non-Markovian. The method proposed can solve the whole problem di-
viding the task into sub-tasks and decomposing the value function faster than the traditional
MAXQ.

2.5 Reinforcement Learning for Mobile Robotics

This section presents some selected examples to solve mobile robotic problem using Rein-
forcement Learning.

In [30] the main objective is to show the use of Q-Learning for a navigation problem in an
unknown environment, calculating the shortest path to the goal state and avoiding obstacles
through the analysis of captured images that are processed using a canny edge detector.
Capturing images from the environment allows the creation of a grid map of it and the cells
of this grid are the state space of the algorithm. Taking this into account, this problem can
be solved as the Grid world exercise showing that the Q-Learning algorithm can be used to
solve real world navigation problems.

Q-Learning was again used in [31] to help a mobile robot to leave an unknown maze. This
magze has a spiral shape and the robot is placed right in the center of it, which has to leave
the maze only with the help of sonar sensors and the Reinforcement Learning method. The
robot only has three possible actions and in the state space, each state is defined by a vector
representing the left, right and front distances and their relative amplitude. These states are
then divided into two classes: health and sub-health states. The health states show that the
obstacles are very far away from the robot and the sub-health states indicate that at least
one obstacle is near the robot. The reward function is made with the help of the user, who
gives the robot information about the best action to choose in each of the states. In the end,
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the robot learned how to solve the maze with the help of the Q-Learning method converging
to a fine solution after 300 steps.

In [32] the reader is presented with a Reinforcement Learning approach to allow a service
robot, Roomba, that has a topological map of the environment, to learn a path from one
location to another. The environment is a set of rooms and in each of them the robot only has
a set of different movements to make, given by the user as a navigation map. The algorithm
used was the Q-Learning and in order to traverse through each room towards its objective,
the robot uses the A* search algorithm to find the shortest path. The results obtained were
positive, showing that the Q-Learning is a viable method to use in mobile robot navigation.

In [33] the authors applied an improved Q-Learning algorithm in a two-dimensional setup
where a robot tries to learn its path without colliding with any obstacles or preys to a final
destination. The algorithm differs to the traditional one because all the state-action pairs are
stored and replayed backwards to propagate the refined Q values from any state to the goal.
Each of the states has information about the x and y coordinates of the robot and if the robot
sees an obstacle or prey in front, right, left or rear of it. This method proved to be better
than the traditional Q-Learning due to the higher rate of change of the ) values accelerating
the convergence of the algorithm.

Model-based methods are increasingly used in the field of mobile robotics, whether in
obstacle avoidance, parking, overtaking in transit, etc., with more and more research on new
or more efficient algorithms.

In [34] and [35] it is proposed a model-based algorithm based on a cell mapping technique,
an extension to the CACM technique, for a motion planning done online in nonholonomic
mobile robots. These robots have the peculiarity of not being able to change their pose
instantly to any of the available directions. The CACM technique is based in the Bellmans
principle of optimality for continuous dynamic systems and on cell-to-cell mapping techniques
discretizing the state variables of the system, dividing the state space into cells. This method
uses the Adjoining Cell Mapping (ACM) technique, whose main objective is the creation
of a cell mapping where only trasitions between neighbour cells are allowed. A comparison
between this algorithm and Q-Learning is made, in which case the algorithm used obtains
better results.

In [36] a new algorithm based on a model-based approach using the CACM technique is
presented, which can be directly used in a real mobile robot with integrated vision system
and whose mission is to perform a docking task without requiring a simulated environment.
This algorithm is compared to a linear controller improving the results and speeding up the
docking process, having approximately 60% of the cells controlled against only around 40%
using the linear controller method.

In [37] the reader is presented with a quasi-online Reinforcement Learning approach where
the robot while exploring the environment also creates a probabilistic model of the same being,
compared later this algorithm with the more classic methods like Q-Learning, Dyna-Q and
Prioritized Sweeping. The algorithm created is based on Prioritized Sweeping with directed
exploration and a transformed reward function. Exploration is a very important factor in
Reinforcement Learning, and the Directed exploration, unlike the undirected one, is way
more efficient because explores unevenly around the current policy, allowing to converge to a
more complete model. The transformed reward function allows more information to be given
to the robot during the learning process, designing a straightforward reward function and
afterwards transforming the original reward function to accelerate the learning process. This
approach shows superior results than any of the traditional algorithms converging quickly to
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optimal solution.

In [38] the authors describe a variant of the Rmax algorithm used for planning on a
relocatable action model, (RAM-Rmax). Rmax is a powerful model-based algorithm with
a near-optimal performance thanks to its polynomial computational complexity [39]. The
Rmax is divided in two steps: in the first one, the agent is in the computational stage, using
its knowledge applying the optimal policy until the end of the episode or the visit of a new
state, and in the second step, the agent updates the rewards and transition probabilities of the
model for each of the possible actions, recalculating the optimal policy. The results obtained
using a Grid World showed that the RAM-Rmax was faster than the traditional Rmax and Q-
Learning to begin to follow the optimal policy, and finally, the authors compared the algorithm
created with the Rmax in a real environment and the agent almost immediately followed the
optimal policy using the RAM-Rmax algorithm.
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Chapter 3

Experimental Setup

One of the objectives of this dissertation was the development of a robotic system able to
perform navigation experiments in a real maze-like environment. This chapter describes the
experimental setup used throughout the work from the initial steps to the final solution,
including the overall system architecture at the hardware and software levels.

3.1 Overall System’s Architecture

One of the objectives of this dissertation was the development of a robotic system able to
perform navigation experiments in a real maze-like environment. This chapter describes the
experimental setup used throughout the work from the initial steps to the final solution,
including the overall system architecture at the hardware and software levels.

Fig. illustrates the devised robotic systems architecture. The communication between
the host computer and the remote mobile robot is established through a wireless system, such
that high-level commands are sent from the host computer to the mobile robot and sensorial
measurements (feedback) flow in the opposite direction. In what concerns the software de-
velopment, the first decision was to adopt the ROS middleware for the robotic project since
it provides multi-platform support, distributed programming, real-time execution, more and
more compatible products and powerful simulation tools.

Figure 3.1: Main computer vs Arduino diagram.
The selection of the robotic platform and the mobile robot simulator required further

study having in mind several requirements. On the one hand, the basic requirements for the
mobile robots were as follows:
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1. As cheap as possible to overcome budget limitations;
2. Small-size to operate in maze layouts whose corridors are about 30 cm width;

3. Self-contained in terms of energy supply and long battery life since the robot may have
to operate during long periods of experimentation;

4. Support wireless communications to increase the range of applications;
5. Equipped with low-level sensing/actuation systems.

Multiple sensors, working on different principles, can be installed on a mobile robot so
that it can perceive its environment. However, in the context of this work, the robot platform
should rely, above all, on a set of infrared sensors distributed around the perimeter of the
robot to build a local map of a maze-like environment. The presence of sonar-sensing could
provide complementary information useful, mainly, during the training phase.

On the other hand, a simulator has an important role when applying Reinforcement
Learning in the context of robotics. On the one side, experience on real physical robots is,
usually, expensive, tedious to obtain and hard to reproduce. For example, model-free methods
can learn in real-time, but often need thousands of interactions with the environment to learn
a good policy. On the other side, there are limitations to using simulated robots: experiences
performed in simulation environments may be hard to transfer to the real-world since modeling
errors and under-modeling can lead to quite different behaviors (unpredictable behaviors).

In line with this, the main concern was to find the right hardware and software tools to
implement a final solution without spending an excessive amount of time with engineering
solutions that, often, end up in reinventing the wheel. Therefore, the following subsections
review both mobile platforms and robotic simulators available in the market according the
above requirements.

3.1.1 Mobile Robot Platform

Recent advances in sensor miniaturization and computational power has expanded the offer
of small, low-cost mobile robots. This subsection briefly describes the three small-size robots
under analysis: ct-bot, Khepera IV and Alphabot2 (Fig. .

Figure 3.2: Example of mobile robot platforms under analysis: ct-Bot (left), Khepera IV
(middle) and Alphabot2 (right).

c’t-Bot is made in Germany and offered by eMedia and Segor electronics [40]. It was made
to avoid obstacles and compete with other ¢’t-Bots solving mazes. Due to a wide variety of
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sensors to measure distance, light, lines, abysses, flaps, it is a very viable robot for mobile robot
navigation activities. It has a peculiar particularity since all its components are Through-Hole
Technology (THT), unlike the most known cases that use Surface-mount Technology (SMD))
components. It has a similar structure to the AlphaBot2, with a small size to pass through
very narrow spaces, it has sensors, actuators and a battery at the base while the electronics are
on the top plate. It also has a rectangular opening at the front so one can push small objects.
It contains an Atmel ATmega32 as a microcontroller that has the mission to coordinate the
movement, read the values of the sensors and communicate with the outside. Along with the
robot, an open source simulator was created, ¢’t Sim, used to reproduce the real environment
and to test the bots without having the problems of the physical environment and incoherent
measures.

Khepera IV is the latest reference from the KTeam company, headquartered in Lau-
sanne, Switzerland, which began as a startup created at the Ecole Polytechnique Fédérale
de Lausanne (EPEL]) [41] . This company is dedicated to the creation of small robots that
contains state of the art features to carry out experiments and studies in mobile navigation,
real-time programming, artificial intelligence and multi-agent systems. With a Linux core
with Bluetooth, Wi-Fi, accelerometer, gyroscope, it is a robot with a high modularity, with
capacity to add a varied range of extensions. It has an array of infrared sensors for obstacle
detection and line following and ultrasonic sensors to detect objects at greater distances. In
addition to infrared and ultrasonic sensors, the Khepera IV contains an integrated camera
capable of color filming at a rate of 30 fps. It would be the ideal robot to perform all the
tests done in this work, but due to the excellent quality of electronic components, it is an
extremely expensive robot, costing around two thousand and three hundred euros.

AlphaBot2 is a second-generation robot built by a company named Waveshare and based
in Hong Kong, China [42]. The robot has three variations, each for a distinct board type: one
compatible with Arduino, the second compatible with Raspberry Pi Zero W and the last one
with Raspberry Pi 3 Model B. It is an interesting robot because in spite of the low price it
has systems of line tracking and obstacle avoiding already integrated.

The final choice fell on the Alphabot2 robot compatible with Arduino. In addition to a
lower cost, this is an Arduino solution that presents an easy-to-learn programming language
(derived from C++) and provides open-source tools. The version chosen was the version
compatible with the Arduino board, specifically the Arduino Uno Plus, and it is interesting
to know all of its components: (see Fig. and Fig. [43])

Arduino Uno Plus

The company Waveshare has created an Arduino board compatible with the Arduino Uno
R3, being an improved version with the possibility of supporting more types of shields (Fig.
3.3). The table shows some of the differences between these two Arduino boards [44].

Arduino Uno Plus

Arduino Uno R3

Operating Voltage

5V/3.3V

oV

USB Connector

Micro USB

USB Type B

Oscillator

Crystal Oscillator

Ceramic Resonator

ADC Channels

8

6

Table 3.1: Comparison between Arduino Uno Plus and Arduino Uno R3.
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Figure 3.3: Arduino Uno Plus dimensions.

The dual operating voltage is necessary to support a wide variety of shields. The Micro
USB connector is used to allow a better fit by not blocking the placement of shields. The
crystal oscillator provides more accurate clock measurements than the ceramic resonator.
The CFG and Reserved pins can be configured as analog pins, however, by default, the CFG
pin is connected directly to the VCC through a resistance of value equal to 0, this connection
had to be desoldered in order to be able to use the pin as an analog port.

Sensors

e ITR20001/T - Opto Interrupter - The ITR20001/T infrared sensor presented in
Fig. is commonly used to follow lines, but in this particular case it will be used to
detect and decode bar codes in the maze. The Alphabot has five of these sensors in order
to solve pathfinder exercises, but in this work, only one of them will be used, because
there is no need to receive the same information from the five sensors simultaneously.
The ITR20001/T has an infrared emitting diode to a NPN silicon phototransistor, side
by side, which allow the detection of the robot passage over a black and white bar code
and distinguish both colors, as well as the base of the maze.In order for it to function
properly, in the moment the robot starts up, it is necessary to calibrate these sensors
by moving the robot over one of the bar codes [45].

Figure 3.4: Reflective infrared photoelectric sensor, ITR20001.
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¢ HC-SRO04 - Ultrasonic module - The HC-SR04, presented in Fig. [3.5] is a distance
sensor composed of a transmitter and receiver, with a capacity of measuring distances
between 2cm and 4m, with an accuracy of approximately 3mm. This sensor emits ul-
trasonic signals that reflect in the object to be reached and return to the sensor which
allows to calculate the distance to the target taking into account the speed of the signal
[44].

The speed of the ultrasonic signal emitted by the HC-SR04 Sensor corresponds to the
sound velocity, which is approximately 340 m / s, so if the sensor is at a distance x from
the object, the signal will travel a distance equivalent to 2x , the wave is sent by the
sensor and rebounded in the obstacle, then it travels 2 times the requested distance.

Figure 3.5: Ultrasonic module, HC-SR04.

Actuators

e Omni-direction wheels.
e Dual H-bridge motor drive,TB6612FNG.
e N20 micro gear motor reduction rate 1:30 6V /600RPM.

e Battery holder, for 14500 batteries.

3.1.2 Robotic Simulators

A review of the literature on mobile robot navigation based on RL techniques shows the
usefulness of realistic simulators for testing and evaluating performance of the algorithms
in a cost-effective and timely way. [47, [48]. These programming tools involve the proper
selection of a physical engine, as well as the realistic simulation of all robots functions and
environment interactions, including the dynamic motion of the robot, control modules and
sensor characteristics. Among the most used simulators are V-REP, ARGoS, Gazebo and
MATLAB/Simulink, whose most important features are described below.

Virtual Robot Experimentation Platform (V-REP) is a robot simulator made by
Coppelia Robotics used for fast algorithm development, simulation, prototyping and verifi-
cation in cases of remote and safety monitoring, hardware control and factory automation
simulation.[49]. V-REP is a very complex simulator that spends too many resources. It has
the advantage of offering several physics engines, the possibility of interaction with the user
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during a simulation and allows mesh manipulation. It is a very effective simulator when the
number of robots is low.

ARGoOS is a robot simulator that was initially developed whitin the Swarmanoid project,
funded by the European Commission and that started in 2006. This project had as its main
objective the design, implementation and control of an “army” of autonomous robots of three
types: eye-bots, hand-bots, foot-bots[50]. Later, it became the main simulator tool in some Eu-
ropean projects like ASCENS, H2SWARM, E-SWARM and Swarmix. Through these projects
it is possible to realize that it is a simulator made for a higher set of robots simultaneously,
having a high efficiency in many applications, such as exploration of hostile environments,
nano-scale medicine and disaster recovery.[51]

ARGoOS is a simulator that privileges performance to the properties of the robot, the
environment and the physical characteristics. It has the disadvantage of not being able to
import 3D meshes, and as a consequence that it would be an arduous task to construct the
model of the robot Alphabot2-AR. Also, it would not be the most suitable simulator to carry
out the tests of this dissertation because in them only one robot will be used.

Gazebo is a robot simulator that began to be developed in 2002 at the University of
Southern California [52]. Its creation is due to the fact that a simulated environment is
necessary to mimic the behavior of a robot in a real environment. Over the years, the software
has been improved until the Open Source Robotics Foundation (OSRF) entered the scene in
2012, and since that date, the Gazebo has been growing a lot and it is already in version
Gazebo 10.0. Unlike ARGoS, the Gazebo has a high number of features almost at the level
of V-REP, but has a much simpler interface and a large number of robots already modeled.
However, Alphabot2-AR is not one of them and would have to be created. Although it allows
the importation of 3D meshes, it is not possible to edit them. The biggest problem with the
Gazebo simulator is the number of interface-based problems and installation of dependencies.

Most of the work focuses on optimizing the performance of RL algorithms from simulation
models (prior knowledge) before transferring the best solution on the physical system, for
example, in the form of an initial policy. It is often observed that solutions optimized in
simulation are inefficient on the real robot due to modelling errors and under-modelling effects.
Solving the virtual versus real gap requires often optimizing the parameters of the solution
on the real robot. In this work, it was decided to start by using a kinematics simulator to
be developed in MATLAB (described in Subsection 3.3.4), focusing on the simulation of the
IR-sensors interacting with the environment. The initial hypothesis is that, in the context of
a HRL approach, a simple kinematic model provides a chance to learn a non-optimal policy,
but able to successfully achieve the desired goal without a clear reality gap.

3.2 RLAN-bot Final Prototype

The final mobile platform, hereinafter called RLAN-bot(Reinforcement Learning Autonomous
Navigation Robot), resulted from the integration of a set of components missing in the Al-
phabot2, including a wireless communications module and a belt of infrared sensors dis-
tributed around the perimeter of the robot:

Wireless Communication Module - To enable communication between the robot and
the computer, a wireless communication module, ESP8266 ESP-01, is used (Fig. . This
module allows the Arduino installed in the robot to access the Wi-Fi network in which the
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computer is also connected. Instead of being connected to the Arduino, it could act alone as
it is a System On Chip (SOC), not needing a microcontroller, having two General Purpose
Input/Output (GPIO)s. However, as two are not enough for this project, the module
is only used to make wireless communication.

Figure 3.6: ESP8266 ESP-01 module.

This module supports 802.11 b/g/n networks which are the most common networks nowa-
days and can be used as Access Point, Station, or both simultaneously, allowing the sending
and receiving of data. ESP8266 ESP-01 comes with pre-installed firmware with AT com-
mands. These commands enable quick connection to the Wi-Fi network and are compatible
with the Arduino IDE. The connection between the module and the Arduino is made through
an adapter showed in Fig. that has a voltage regulator that converts the voltage sent by
the Arduino, 5V, into the supply voltage that the ESP8266 accepts, 3.3V.

@ 0PEN-SMART  ESP-91 Adatper

Figure 3.7: ESP-01 adapter.

The communication between both Arduino and ESP8266 is made using the RX and
TX pins, Table. The module supports Transmission Control Protocol/Internet Proto-

col (TCP/IP)) and User Datagram Protocol (UDP]) as communication protocol.

Arduino Uno Plus | ESP-01 adapter
5V VCC
GND GND
D9 RX
D8 TX

Table 3.2: Connection setup between Arduino and ESP-01 adapter.

Analog Digital Converter ADS1015 12 Bit - In order to be able to add more sensors
to the robot, it was necessary to add a module that would increase the range of analog pins.
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An analog-to-digital converter was used, ADS1015, with a high precision of 12 bits, whose
communication with the Arduino is made through 12C (Fig. [3.8).

Figure 3.8: Analog Digital Converter ADS1015 12 Bit.

This module has a very low power consumption, in the order of 150 uA, an extremely fast
data conversion rate from 128 SPS (samples per second) to 3300 SPS and has a multiplexer
internally that allows to have two differential or four single-ended input measurements. It also
has a digital comparator for under and overvoltage detections.

Its connection to the Arduino is quite simple since it is done through I12C, using the
addresses available between 0x48 and 0x4B. The analog pins connect to the output voltage
pins of each of the four infrared sensors that will be discussed below. The entire connection
scheme can be seen in Table [3.3]

ADS1015 Module | Arduino Uno Plus | Infrared Sensors
VCC 5V VCC
GND GND GND

ADDR GND -
ALRT - -
SDA SDA -
SCL SCL -
A0 - Vo (sensor 1)
Al - Vo (sensor 2)
A2 - Vo (sensor 3)
A3 - Vo (sensor 4)

Table 3.3: Connection setup between Arduino and ADS1015 Module and Infrared Sensors.

Sharp GP2Y0A41SKOF - As the robot used does not have distance sensors for all the
needed directions, only having an ultrasonic sensor turned forward, it required a set of sensors
that accurately measures distances in the six directions (left, front left, right, front right, front
and rear). For this purpose, six infrared sensors, Sharp GP2Y0A41SKOF were used [53] ( Fig.
. These sensors have the basic operation of an infrared sensor: it has a Position Sensitive
Detector (PSD)) , an Infrared Light Emitting Diode (IRZLEDI) and a signal processing circuit.
As a result of its triangulation method in distance measurement, it is not much influenced
by external factors such as ambient temperature and reflectivity of objects. It can measure
distances that range from 4 cm to 30 cm. Thus, in order to allow the robot to be able to
have distance values very close to its ends, these sensors were placed in the center of the
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robot in its upper part, fixed in a support made of Nylon that accents on the Printed Circuit
Board (PCBJ) designed to make all the connections to the robot (Fig. [B.1]).

Figure 3.9: Sharp GP2Y0A41SKOF.

Each sensor has three pins: VCC, GND and Vo, whose connection is necessary to make
them work. The required supply voltage ranges from 4.5V to 5.5V so it is connected to the 5V
pin of the Arduino, the GND is connected to the GND of the Arduino, and the output voltage
of four of them is connected to an analog pin of the ADS1015, and the other two sensors are
connected to the Arduino pins CFG and Reserved. The distance values are calculated by the
Arduino. As it can be seen, the measured distance is obtained through a voltage value having
a curve similar to that of Fig.[3.11

The integration of the hardware described above required the development of a that
could serve as a shield to connect these components to the Arduino. Initially, it was thought
that four sensors (front, back, left and right) would be sufficient for the learning process and
a PCB was created only with the connection for these four sensors. A pole was also designed
to properly install the four sensors that would be attached to the top of the board. This
parallelepiped pole had a base measuring 14mm of side and a height of 60mm. Latter, with
the first experiments, there was a lot of ambiguity in certain states that could not have the
same action. Therefore, a new was designed with the connections for two more infrared
sensors, one diagonally to the left and one diagonally to the right. In order to incorporate
these new sensors it was necessary to construct a new pole to support all six sensors at the
top of the robot. This pole has a parallelepipedic base with 14 mm wide and 15 mm high,
and above it, a hexagonal prism with five sides with 21 mm where the front sensors are fixed,
left and right, and a side with 52 mm where the rear sensor is fixed. This prism is 45 mm
high so the pole has a total height of 60 mm. The RLAN-bot is shown in Fig. [3.10]

Figure 3.10: Final version of the robot.
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3.3 Software Tools

This section identifies all the software tools either to perform the experiments with the phys-
ical system or to simulate the operation of the robot, including the Arduino IDE, the ROS
development environment and the mobile robot simulator developed in the context of this
work.

3.3.1 Arduino IDE

Arduino IDE is an application used to write and upload programs on Arduino. It supports
programming languages like C and C ++ and contains a large number of libraries to facilitate
contact with the user. This software is supported by the various existing platforms, Windows,
Linux and Mac. This application was used to write and upload in the Arduino Uno Plus the
program that makes the reading and calculation of the distance of the infrared sensors, the
reading of the infrared sensors of line tracking, the configuration of the Wi-Fi module and
the reception and sending of information to and from the computer (Fig. [3.12)).

« Calibrate line following
Sensors

« Connect ESP-01

« Setup Timerl interrupts

!

« FRead sensor information
« Send speed to the left
and right wheels

Timerl (frequency of 30Hz):

« Send the sensor information
through the ESP-01 to the PC

+ Receive the speed commands
through ESP-01 from the PC

Figure 3.12: Flowchart diagram of the program running on the Arduino.

3.3.2 ROS and Development Environment

Robot Operating System (ROS)) is an open-source middleware that facilitates the communi-
cation between the computer operating system and the external equipment like sensors and
robots. It is easy to implement in Python and C++ and commonly used by roboticists for
being a thin and easy testing middleware and having a dedicated library with clean inter-
faces. There are a few versions of ROS already developed like the ROS-Industrial dedicated
to robots for manufacturing. Others are still in development, like ROS-M for military com-
panies, H-ROS for interoperable components and ROS 2.0, an upgraded version of ROS with
the latest technology.

ROS communicate between ROS nodes that represent the executable code, a process.
ROS nodes do not need to be all exclusively on the same computer, making it a very flexible
system. They can be on the computer or spread between computer and robot. These nodes
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communicate through messages, each one organized into categories called topics. Nodes can
collect information from the topics, subscribe, or publish information on them. There is a
Master Node that provides naming and registration services to the remaining nodes, tracking
subscribers and publishers to the topics and providing the communication between nodes.
The communication protocol used between the nodes is the (Fig. [3.13]).

ROS
Master
!
__.,i-\,\ Registration /-1_‘\ Registration o

,// \‘\ _// A b -
(‘/ ROS \\I Messages I’ ROS \\\ Messages f‘f ROS \\
Node 1/ ‘Node 2/ ‘Noden/

\\F// \\_,_/ \\\_r//

Messages ‘

Figure 3.13: Basic ROS diagram.
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Figure 3.14: ROS architecture graph.

For the incorporation of the ROS in the project, a tool is needed to write all the C ++
code of the reception of the information of the sensors and consequent analysis and process.
The Visual Studio Code was used to edit the created code and to save the entire procedure
directly to GitHub.

The ROS architecture allows to create nodes that function as processes, each of the nodes
having a certain function being able to communicate between them through the topics. In
this project, three distinct nodes were used as can be seen in Fig.

e publish_data - This node allows to receive the sensory information sent by the robot
remotely with the help of the Wi-Fi module, it analyzes if the robot has changed sub-
task taking into account the information of the checkpoints, and later publishes the
values given by the sensors and the checkpoint number in the dedicated topic to save
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this information, sensor_data. Subsequently subscribes to the topic action to be able to
send to the robot the command of movement to use every moment.

e online_learning - This node is responsible for performing the learning algorithm Q-
Learning in each of the sub-tasks with or without the learning tables previously obtained
in simulation. For this, it subscribes to the topic sensor_data to calculate the state in
which it is at each moment and publishes in the topic action the action that the robot
has to perform.

e after_learning - This node is in charge of obtaining the maximum Q value in each state
that the robot is, taking into account the learning tables obtained in simulation. For
this, it subscribes to the topic sensor_data to calculate the state in which it is at each
moment and publishes in the topic action the action that the robot has to perform.

3.3.3 Communication Protocols

In order to configure the communication between the robot and the computer, it it first
necessary to understand the operation of the AT commands and the ESP-01 module. This
module version has a baudrate of 115200, so the first thing to do is initialize the communication
with this baudrate. To configure the module, it is necessary to use an existing library in
Arduino: SoftwareSerial. This happens because the ESP-01 needs to create a Serial connection
apart from that that already exists in the Arduino. This library does not work correctly with
the default baudrate that the ESP-01 brings from source, 115200, so it is necessary to lower
this baudrate to 38400. To do this, the existing firmware in the Wi-Fi module has a specific
command:

e ATH+UART_DEF= <baudrate>, <databits>, <stopbits>, <parity>, <flow control>.

Having the module with the correct baudrate, it can be configured as a Station. To setup the
module, it is necessary to follow a few steps:

o ATH+RST - Restarts the module.

e ATH+CWMODE= <mode> - Set the Wi-Fi Mode as Station, Access Point or both. In
this case, the chosen Wi-Fi Mode is the Station one.

1. Station;
2. Access Point;

3. Both.

e AT+CWJAP="ssid of the network”,”password” - Connects the Wi-Fi module to an
Access Point.

e AT+CIPMUX= <mode> - Enable or disable multiple connections. In this case, it is
used the single connection.

— 0 - Single Connection.

— 1 - Multiple connections.

33



e ATH+CIPSTART= “type of connection”,”remote IP address”, <remote port number>,
<detection time interval (TCP)> - Establishes one of the three connections: TCP, UDP
or Secure Sockets Layer (SSLI). In this case, the UDP protocol is used because it is faster
than the TCP/IP protocol due to non-retransmission of loss packets.

After the configuration is made, the robot is ready to send the values of the sensors and
receive the commands to move. In order for this communication to be possible, there are two
more commands that will be used in loop since it will be a continuous activity:

e +IPD,<data length>:<data> - Receives network data. After this command, it is used
the read function of the SoftwareSerial library that returns a character that was received
on the RX pin of the Arduino.

o AT4+CIPSEND=<data length> - Sends data of designated length. After this command,
it is used the write function of the SoftwareSerial library that writes binary data to the
serial port.

Initially a frequency of work of 50Hz was tested, but the command +IPD did not allow it
because many times it did not respond correctly, thus this frequency was lowered to a value
that gives good results, having fixed the frequency in 30Hz, both in the Arduino and the
main computer. To keep sending and receiving information at a fixed rate, a timer was used
in Arduino and the same rate was designated in the ROS environment.

3.3.4 Mobile Robot Simulation in MATLAB

MATLAB is a widely used software in the field of Machine Learning, robotics, computer
vision and image processing. Its matrix-based programming language greatly simplifies the
mathematical operations being of a high computational speed. Due to the high number of
already existing functions, it is an essential tool in the creation of simulators for a case study
such as the one studied in this work. MATLAB is a tool that greatly facilitates the analysis
of data and the creation of plots.

During the dissertation, MATLAB was used in the first phase to perform an exercise to
familiarize with Reinforcement Learning, solving a Gridworld environment with an initial
state and with the intention of discovering the path to the final state, being able to use only
four types of drive: go ahead, go back, go right and go left. For this exercise, the Q-Learning
algorithm was used.

For the simulation of the real environment, it was decided not to use a simulator as rich
as the three already mentioned, but to use MATLAB instead.

The functions created were made parametrically so as to create different environments, to
change the dimensions of the robot, to change the number of sensors and the maximum and
minimum distances that these measure, and to change the distances for the different levels of
the sensors. Altogether there are seven functions, each with a specific purpose:

Fig. illustrates the interface created in MATLAB for simulating the navigation of a
mobile robot in a maze-like environment. For that purpose, a library of MATLAB-functions
was created for running experiments with a simulated robot whose dimensions and number
of IR-sensors could be identical to those of the RLAN-bot. For generalization purposes, these
functions allow to change the dimensions of the robot, the number of sensors, their range and
the distribution by the robot. Altogether, the following MATLAB-functions were developed:
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WheelMotionGenerator - it allows to create the different actions that the robot can
choose, giving to each of them different values of angular and linear velocity.

LineLinelntersection - it allows to find the intersection points among all lines of the
environment and robot.

IRSensorData - it allows to extract the intersection points between robot and environ-
ment and to calculate the sensor distances.

getSensorLevels - given the distances measured by the sensors and the predefined dis-
tance levels, returns the level of each sensor in order to determine the state where the
robot is.

get_State - it allows to determine the current state of the robot taking into account the
levels of each one of the sensors.

Graphical Animation - it is responsible for showing the user the behavior of the robot
in the environment throughout the simulation.

MazeSimulator - it is the main function, where all the previous functions are used
and where the learning algorithm is processed. It is also in this function that all the
parameters are initialized.

®
-

Figure 3.15: Graphical interface of the kinematic simulator in MATLAB.
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Chapter 4

Proposed Methodology

This chapter presents and discusses the methodological approach adopted in this work for
solving the challenges of mobile robot navigation in a maze-like environment using reinforce-
ment learning. First, it emphasizes the problem and the principal considerations underlying
the choice of HRL approach to be employed. Second, it explains how the navigation task is
decomposed by introducing hierarchy into the problem. Finally, it discusses the efforts made
to automatically specify the reward function.

4.1 Problem Description and Initial Considerations

This dissertation addresses the problem of a mobile robot navigating in a maze-like envi-
ronment from a particular perspective that was inspired by human topological navigation
and hierarchies. The following example shows how to get to the University of Aveiro (goal
location) from Porto (starting location) and it helps to explain the navigation strategy to
follow:

Take the Freizo bridge towards the Carvalhos tollgate to enter the A1, exit to
“Aveiro” and, after the toll, exit on the right to enter the A25; take the A25 to
“Aveiro Centro” and at the first roundabout take the second ezit, follow to the
traffic lights and, when there, turn right.

This example represents a topological map that abstracts a continuous spatial experience
of the driver into a discrete sequence of topological nodes, which will be called checkpoints.
This map provides the connectivity among checkpoints, and thus, it identifies the underlying
decision structure of the environment. These checkpoints correspond to the robots arrival at
or departure from discrete areas, such as hallway intersections, roundabouts, traffic lights or
visually distinct landmarks. By separating the local from the global structure of the environ-
ment, the mapping problem can be divided into smaller and easier to solve parts.

On the learning side, a topological map provides a useful representation for a hierarchical
structure in which the problem can be divided into:

1. Higher-level learning of the optimal decisions (options) to be taken at the discrete
checkpoints;

2. Lower-level learning of the optimal behavior (sub-tasks) between two checkpoints (op-
timal, for example, in terms of safety, energy consumption, etc).
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As a result, the size of a topological map depends on the structure of environment itself,
but not on the trajectory the robot takes nor on the time spent in the environment. As
the robot travels through the environment, the model for each situation in the map can be
improved as additional observations are made.

These initial considerations aimed at the careful engineering of the hierarchical framework
for solving the problem at hands. In this case, the topological structure (i.e., the discrete
checkpoints) consists of barcodes properly placed in the environment. The IR line tracking
sensors are adapted to scan the barcodes. Fig. shows the real maze layout (left) and the
simulated one (right), where the location of the checkpoints is associated with the existence
of doors in the environment.

Checkpoint 5

9 uiedysyD

Checkpoint 1

Checkpoint 4

Z Jiodyaya

Checkpoint 3

Figure 4.1: Real and simulated maze layouts with checkpoints.

The maze has a total area of (1.2 x 1.5) m2, the corridors have a width of 30 cm (15
cm height in the real 3D version) and six distinct barcodes are associated to each door. In
addition to being distinguishable from one another, these barcodes should allow scanning
in both directions for differentiate between arrival and departure situations. As such, their
creation obeys the following rule: all checkpoint start with a black bar and end with a white
bar (see Fig. . Each bar code consists of 5-bars of 1.7 cm width that occupy the width
of the corridor. The goal location is associated to another checkpoint that informs the robot
has reached it.

Figure 4.2: Barcodes placed on the ground environment (the barcodes associated with
checkpoints 1 to 6 are represented from left to right; the GOAL checkpoint is the rightmost).

After defining the initial robots location, the robot should learn how to reach the goal
location as fast as possible. Here, most of the work focuses on optimizing the performance of
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RL algorithms from simulation models, before transferring the best solution on the physical
system. The initial hypothesis is that, in the context of a HRL approach, robot simulations
can provide a policy that, while not optimal, achieves the desired objective without a clear
reality gap.

At the same time, to find a good policy it will be used a valued-based method like Q-
learning (TD-learning) to measure how good an action is in a particular state. The solution
adopted considers tabular forms of the state-action values, reward and policy in order to
represent what is learned. Given its intuitive geometry and its relevance to maze navigation,
the next section introduces the Gridworld problem proposed in [I8]and solved in simulation
using the Model-free algorithm, Q-Learning.

4.2 Gridworld

Gridworld is a 2D map of customizable size in the form of a maze, where the agent begins
in an initial cell and aims to reach the goal cell using the minimum of possible iterations
discovering the optimal policy. On the way the agent has obstacles that make the arrival to
the final objective more difficult.

Hyper-Parameters

During learning, the agent wants to get the actions at a certain state that offers him the
highest reward. However, for this to be possible, the agent needs to have taken all actions,
so that he knows which of them is best to take in each specific situation, that is, he needs to
explore all possible scenarios. Having all the information, the agent can choose to perform the
action that gives him a higher chance of success, exploitation. In Reinforcement Learning,
a trade-off between these two concepts, exploration and exploitation, is necessary in order to
maximize the cumulative sum of rewards.

Reinforcement Learning has two distinct methods: model-free and model-based. For the
problem in question, the model-free method works perfectly and so the algorithm used is
the famous Q-Learning. The algorithm of Q-Learning has hyper-parameters that can not be
chosen in a light mood: the learning rate, discount factor and the action selection probability.

The learning rate, or «, allows one to determine how important the new value obtained
is in comparison with the previous one. The learning rate can be any value between 0 and 1
but must be chosen with discretion. If it is equal to 0, the agent has no exploratory side and
does not learn with the new interactions, that is, the exploit side is favored in its entirety. If
the learning rate is equal to 1, the agent forgets the previously acquired information. Thus,
it can be seen that the higher the learning rate the faster the learning process, however, it
may not converge correctly while using a value close to zero the convergence, although more
time consuming, it is more correct. With this in mind, it is usual to give a low value to the
learning rate,like 0.1, for instance.

The discount factor, or -, shows the importance of future rewards. It is, like the learning
rate, a value between 0 and 1, and if it is equal to 0, the agent is only interested in the reward
obtained in the current state. For example, in the pole-balancing exercise the actions that the
agent takes only need to influence the reward of that instant, so the discount factor can be
equal to 0. Normally, this does not happen, so the discount factor is a value closer to 1 , often
given the value of 0.9, 0.95 or 0.99, so that the reward of the next state has more weight in
the update of the values.
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At the moment of choosing which action to take, there must be a trade-off between ex-
ploitation and exploration, because if the chosen action is always random, the agent never
acts according to the knowledge obtained, only by exploring the environment, but if the cho-
sen action is always the one with the highest value, the agent may not be opting for the
best action and is not exploring the rest of the possibilities. When choosing an action that
seems to be the best, the other possible actions are not used by missing the opportunity
to have better results and not completing the Q-Learning table for most values. The most
commonly used methods for deciding what action to take are e-greedy and Softmax. In the
case of e-greedy, the algorithm chooses the most valuable action in most iterations, favoring
the exploitation, however, it can also explore other actions, and the probability of this hap-
pening varies depending on the value given to epsilon. The larger the epsilon, the greater the
exploration and the smaller the exploitation, and obviously, if the epsilon has got a low value,
the agent privileges the exploitation to the exploration. € is a value between 0 and 1 as well
as the learning rate and the discount factor. When choosing the action, the agent chooses the
one with the highest Q-Value with a probability 1 - €, otherwise it chooses a random action,
which allows the optimum policy of the problem to be obtained.

The e-greedy action selection has a problem: when it comes to choose an action, it is
chosen completely at random and may be the worst possible action or one of the best. The
solution to this disadvantage is to vary the probability of each action using a graded function.
This allows to have the most valuable action with a greater probability of being chosen but
also allows to rank the other actions giving a lower probability to the worst actions to take.
This alternative has the name of Softmax [54], and uses the Boltzmann distribution function
to assign the probability 7 (s, a) to the actions, Equation

T is a positive parameter defined temperature. If the value is high, the actions will have
equivalent probability values, otherwise the probability values are quite different. Studies done
between both methods show that Softmax is better, however the parameter to be varied is
very difficult to choose in order to obtain the best results. The e-greedy has the advantage of
being easy to tune and allows good results aswell [55].

Knowing the effect of each of the hyper parameters of this algorithm is necessary to realize
how this one works. Q-Learning is an off-policy TD control algorithm where Q is the action-
value function that attempts to directly approximate the optimal action-value function, Q*,
regardless of the policy followed. It is a simple algorithm but it allows a fast convergence.
At each iteration, a state-action pair is visited and consequently updated by the following
equation:

(4.1)

Q(s,a) + Q(s,a) + afr + v * mac/LxQ(s', a) —Q(s,a)] (4.2)
Where:
e « is the learning rate.
e 1 is the reward made by the action taken at the current state.

e v is the discount factor.
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e max, Q(s',a’) is the maximum expected future reward given the next state and all the
possible actions.

Fig. [4.3|shows several mazes that were created with a constant size (12 rows * 12 columns).
The agent manages to obtain the optimal policy for all combinations of initial and final
position. The agent could perform four actions (up, down, left and right), so the table Q(s,a)
was a table of 144 states each with 4 possible actions. Unsurprisingly, states that create
obstacles and the outer walls of the maze never have their values updated because they can
not be visited by the agent.

Whenever the agent reached the goal state, the process started all over again but in an
initial state randomly chosen so that all the states of the maze were updated and to prevent
any state from being trapped in an action that was not the best.

Figure 4.3: Mazes to be solved using Q-Learning.

The reward function is one of the most important aspects of the Reinforcement Learning
that can be discrete or continuous. In each action-state pair the agent receives a reward that
will be used to update the values of the Q-Learning table.

In this work, when the agent took an action that would cause him to hit a wall or obstacle,
he had a negative reward of -100, and when he reached the goal he received a positive reward
of 100. At each iteration, whatever action he took, the agent had a negative reward of -1 so
that the path from the initial state to the target state is performed in the minimum possible
iterations using the fastest path.

The tests were performed with several pairs of different values of learning rate (0.1, 0.2, 0.3,
0.4, 0.5) and discount factor(0.9, 0.95, 0.99), however, a research had already been carried out
on which values should be used for each of the variables. The information that was collected
in each performed test served to generate some graphs to understand the behavior of the
algorithm used (Fig. . The graphics created show:

e The number of iterations required for the agent to arrive from the initial state to the
goal state in each episode, showing a clear decrease in the number of iterations as the
number of episodes increases.



Algorithm 3 Q-Learning used to solve the gridworld

Initialize Q(s,a) with zeros

Define max episodes to 500

Initialize reward sum and iterations equals to zero

repeat

while state != goal state do

Choose the action, a, from the state, s, using an e-greedy approach
Take the action, a, and observe the reward, r, and the next state, s’
Q(s,a) + Q(s,a) + afr + v * mame(s’, a)—Q(s,a)l
Update the state
iterations = iterations + 1
reward sum = reward sum + reward, r

12:  end while

13: until max episodes

— =
= o

e The cumulative sum of iterations per episode, it is apparent that in an initial phase
there is an abrupt growth of this, and as the agent finds an optimal policy, the number
of iterations is constant, making the rise of its cumulative sum softer.

e The cumulative sum of reward per episode, where it can be seen that in an initial phase,
as the agent is in a tremendously exploratory phase this sum is quite negative, and that
as the number of episodes increases, the sum becomes equal to the final reward minus
the number of steps taken, and the agent stops hitting walls and obstacles.
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Figure 4.4: Gridworld analysis with o = 0.1 and v = 0.95.

Lastly, the optimal policy was obtained and several tests were carried out with random
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initial states to know if the agent had learned to reach the goal state in the minimum steps
possible without ever being locked in an infinite loop between two states (Fig. .

Figure 4.5: Optimal Policy for each of the mazes.

4.3 Hierarchical Approach

4.3.1 Hierarchical Decomposition

The robot system is trained using a hierarchical approach in which low-level components
(sub-tasks) are sequenced at a higher-level. The proposed HRL consists of two layers (two-
level hierarchy). An exercise of this kind requires an approach that divides the problem into
smaller, easy-to-solve problems. The lower level is in charge of dividing the maze into distinct
sub-tasks, each having its own local policy. The focal points of a maze-like environment are
corridors, corners and intersections, and at a intersection there is the possibility to proceed to
two or more directions (front, left or right). Thus, lower-level learning was divided into four
sub-tasks. The higher-level is in charge of making the decision, that is, choose an option for
the sub-task that will perform at the entrance of a checkpoint, and the only sub-tasks that
are considered in this moment of decision are the sub-tasks inherent to the passage through
a door. However, when one of the checkpoints is read in reverse, the robot knows that it is in
a corridor or corner, using the local policy of this sub-task (see Fig.

The algorithm used at the higher level is the classic Q-Learning in which actions are
considered as options, which represent the set of actions to be performed on arrival at a door,
whether it is moving forward, right or left.

Using the idea provided by the Options framework in which an option is a set of individual
actions resulting in an abstraction of states where the lower level is a sub-policy where the
output is an action and the goal is to reach the end of each sub-tasks and the higher level
chooses which of the sub-policies to use at each moment that an option is needed. The start
and end of each sub-task is done using checkpoints, a feature that is not used by any of the
previously mentioned algorithms. Taking into account the HAM algorithm, some ideas were
also taken from its concept. Whenever the agent reaches a door it is in the Choice state,
where it can choose one of 3 options. The purpose is to know which option, in this concrete
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Figure 4.6: Two level hierarchy flowchart.

case called the machine, to call and with what probability. The optimum policy is obtained
recursively, as in the case of the MAXQ algorithm as opposed to the Options Framework
and HAM where it is obtained hierarchically. In the case of the MAXQ algorithm there is an
optimal policy for each of the sub-tasks. The algorithm used allows a temporal abstraction
and a convergence for optimal solution such as all the frameworks presented in chapter 2 and
allows to obtain an optimal policy for each of the sub-tasks as well as an optimum policy for
the higher level of the problem.

4.3.2 Learning of Lower-Level Sub-tasks

Each of the sub-tasks has a state space and an action space required to complete their learning
tables. Before beginning the learning, it is necessary to initialize some parameters that are
known a priori: number of states and numbers of actions that serve to define the size of the
table of Q-Learning. Since the built robot has six infrared sensors for distance measurement,
four levels have been defined to agglomerate the measured values at each moment of each of
the sensors, Table Having four levels of distances for each of the six sensors, it is possible
to obtain the total number of states: 46 = 4096 states.

Measured Distance (cm) | Level
0<d<7 0
7<d<13 1
13<d <20 2

d> 20 3

Table 4.1: Discretization of measured distances.

The discretization of the distance measured by each sensor is made to reduce the com-
plexity of the problem and the total number of states. If this was not done, each infrared
sensor, which has the ability to measure distances between 4 and 30 cm reliably, would have
26 possible levels. With 26 levels per sensor, the total number of states would increase to 26°
= 308915776. This number is excessive for the experiment to be carried out so the discretiza-
tion on four levels seems to be much more plausible. The robot does not have access to its
global position in the maze, since the information obtained by the infrared sensors only offers
its local position, showing the distance to the walls of the maze. This property makes this
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experiment different from the Gridworld case studied earlier, where the agent had access to
their global position and where the states were that same position.

After knowing the total number of states, it is necessary to define the number of actions
achievable by the agent knowing that in a maze the robot needs to change direction whenever
approaching a corner or whenever it arrives at a door and needs to turn either to the right or
to the left, and also needs to compensate for a possible approach to a wall. With this in mind,
the robot has 9 possible actions where one of them is a motion with an angular velocity equal
to zero and constant linear velocity, and the remaining eight have different angular velocities
that allow the robot to turn both left and right with more or less smoothness (Fig. .

Figure 4.7: Possible actions of the robot.

Having acquired the information of the number of states and number of possible actions
in each of the sub-tasks, it is possible to initialize the Q-Learning table for each one, Table
[4.2] At the beginning of the learning these tables are initialized to zero and as the agent is in
a state-action pair, the value corresponding to that action-state pair in the table is updated
according to the equation

State\ Action ay ag aj ag
S1 Q(s1,a1) Q(s1,a2) Q(s1,21) Q(s1,29)
S2 Q(s2,a1) Q(s2,a2) Q(s2,a5) Q(s2,a9)
Qlssar) | Qlsia) Qsiay) Qi)
54006 Q(s4096,21) | Q(s4096,a2) Q(s54096,25) Q(S40§6,a9)

Table 4.2: Q-Learning table for each of the sub-tasks.
The reward function is different for each case, because in a sub-task there are states that

should privilege a certain action that is not the same in one of the other sub-tasks. For this,
the reward function was created in an intensive way so as to make a dedicated learning for
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each sub-task. This intensive study was performed in simulation seeing the particularity of
each state and determining a positive reward equal to 1 for the most beneficial action for the
robot, and negative rewards for all the other eight actions.The most negative rewards were
used for the actions that would take the robot to a more distant position from the one that
is desired. This process allowed a much faster learning and a very effective and smooth drive
through the maze. Seeing as an example the state 4064, presented in Fig. in the sub-task
“Right turn on a door” the action to be privileged is the action with the highest value of
angular velocity to the right (action 5), but if the sub-task is the “Left turn on a door”, this
state already needs to focus the second smoother action to the left (action 7). The reward
function of this state in the sub-task “Right turn on a door” is [-3 -3 -3 -3 1 -5 -7 -9 -10],
and in the sub-task “Left turn on a door” it is [-3 -5 -7 -9 -10 -3 1 -3 -3]. The particularity of
this type of reward is that it is modeled from the previous knowledge that the user has about
each state. Although it is a valid solution, there are other more automatic alternatives that
will be discussed later in this chapter.

Figure 4.8: Representation of the state 4064.

For a more complete learning of each sub-task, several tests were performed on each one,
beginning with different positions and orientations on the environment.

In the sub-task “Corridors and corners”, three simulation maps were created so that most
of the possible states in this case were visited (Fig. . The last two maps were created
because, during the simulation in the complete maze, it was observed a bad behavior of the
movement of the robot to the exit of a corner with a door in the end, that have states that
had not been contemplated in the first map.

During the process of learning the sub-tasks “Right turn on a door” (Fig. 4.10) “Left turn
on a door” (Fig.[4.11)) and “Going forward on a door” (Fig. 4.12)) there were also three maps
created for each of them to be able to contemplate all possibilities in a maze.
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Figure 4.9: Maps 1, 2 and 3 created to simulate the sub-task ” Corridors and Corners”.

O O O

Figure 4.10: Maps 1, 2 and 3 created to simulate the sub-task “Right turn on a door”.

Figure 4.11: Maps 1, 2 and 3 created to simulate the sub-task “Left turn on a door”.
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Figure 4.12: Maps 1, 2 and 3 created to simulate the sub-task “Going forward on a door”.

4.3.3 Learning of Higher-Level Options

The high level of learning allows the robot to choose the sub-task it needs to perform at a
given time. For the learning algorithm, it is necessary to know the number of states and the
number of options. The number of states will be the total number of checkpoints, counting
with the goal state, and the number of options will be the number of possible moves on arrival
at a door: turn right, turn left and go forward. Thus, there are 7 states and 3 options (see
Table [4.3)).

State\Option 01 09 03
S1 Q(s1,01) | Q(s1,02) | Q(s1,03)
S2 Q(s2,01) | Q(s2,02) | Q(s2,03)
s Q(s101) | Qsi:02) | Qfsir09)
= Qlsr.01) | Qs7,02) | Qlsryo0)

Table 4.3: Q-Learning table for the higher level of the learning process.

Firstly, a simulation was made where the robot would navigate through the complete maze
trying to find the goal, using in each of the sub-tasks the updated table of Q-Learning. This
simulation was divided in 50 episodes where the start position was a random position in the
maze, and the objective was to reach the goal at the end of each of the episodes. To do this
task, the reward function had a simple metric: if the chosen option causes the robot to hit a
wall, the reward is -10, if it does not the reward is -1, and if the robot arrives to the goal,
then the reward is 10.

The second approach was used to simulate the complete maze using the updated tables
for each sub-task and perform the learning process of higher level throughout the simulation.
As the number of checkpoints and options is very low, this learning is very fast to converge
on a solution that takes the robot to the goal. This simulation was divided in 50 episodes that
finished with the arrival of the robot to the goal. The beginning of each episode was done
in a random position in one of the corridors of the maze. In terms of the reward function,
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each option taken by the robot that does not lead him to hit a wall has a reward of r =
—1 — (numberO fIterations % 0.001), the opposite has a reward of -10, and reaching the goal
has a reward of 10. The choice of an option was made using the e-greedy method.

This process gives very good results, however, the learning algorithm for this phase can
be done using a state machine as a reference as can be seen in Fig. This representation
is used to allow the algorithm to know what the next state is, as well as the reward to
provide in each case of option-state pair taken at each instant and to accelerate the process of
convergence to the optimal policy, however the agent receives help from the user. The negative
reward equal to -1 is given if the option chosen is the one that takes the robot through the
fastest route. If the reward is equal to -2, the option chosen is possible but the route made by
the robot is longer. When the reward is -10, the option chosen would take the robot against
a wall and could be stuck. If the robot receives a reward of 10, it has arrived to the goal,
finishing the episode.

The algorithm used was the model-free algorithm Q-Learning again. Since it is an exercise
with few states and few options, it does not take many episodes, as the algorithm converges
quickly to an optimal solution.

Right

Reward = -10

Left
Reward =-1
Left
Reward =-1
Right
Front

Rewsard =-1
Reward =-2

Left Checkpoint
Reward = 10

Left

Left Front Reward =-10

Reward =-1 Reward=-1
Right

Checkpoint Reward =-2

[

Right
Reward =-1
Front

Reward =-10

Figure 4.13: State machine used in the learning process of the higher level.
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4.4 Reward Function Design

A reinforcement learning agent learns, by trial-and-error, how good or bad are its actions
based on the rewards it receives from the environment. Thus, the specification of the robots
behavior and goal, through a reward function, must be carefully designed in order to achieve
the ultimate goal of maximizing the accumulated long-term reward. Although in some domains
it seems natural to provide rewards upon task achievement, the most frequent is to include
intermediate rewards guiding the learning process to a desired solution.

Reward shaping is a process by which the system gathers the notion of proximity to the
desired behavior, instead of simply encoding success or failure [56]. In this context, Inverse
Reinforcement Learning (IRI) is the problem of learning a reward function assuming that this
can be reconstructed from expert demonstrations [57, [68]. The design of the reward function
in terms of some selected features, which depend on the robots action and the state of the
environment, can be an effective procedure [59].

Here, two alternative approaches for specifying the reward function will be compared.
First, a manual specification of the reward function is conducted, requiring exhaustive trial-
and-error for properly tuning the values making the robot follow aligned with the corridors
center line, turn in a corner and cross a door. This specification of the reward function is
time-intensive and cumbersome, being included only for comparative purposes. The difficulty
also results from the fact that the state-action spaces in which the learning algorithm operates
does not allow a straightforward representation of the desired behavior.

The alternative is an automatic procedure, running off-line, based on local features rep-
resenting the robot navigation in a corridor and corner (doors are not considered here). For
example, in a corridor, the local posture of the mobile robot is completely characterized by
its distance from the corridor center line and the orientation as related to the corridor axis
(Fig. 4.14)). For each discrete state, these two features are used for mapping the particular
state to a cost function that respects time and safety operation. The following subsections
describe the automatic design of the rewards using the simulated robot.

Figure 4.14: Local representation of the robot state defined by the distance to the corridors
center line and the angle as related to the corridors axis.

4.4.1 Corridor

In order to obtain a reward function that is built automatically, one began by thinking how it
would be possible to do it in a corridor without paying attention to the corners. For this it is
necessary to make the robot know its local position in the simulated map, because in the real
environment the robot only has information about its local position. Therefore, it is necessary
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to obtain the global and local origin coordinates of this exercise. Knowing the coordinates is
necessary to make a transformation where they can be compared in the corridor (Fig. [4.15)).
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Figure 4.15: Transformation made between global and local coordinates - Corridor.
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by =0,+735 (4.3)
Yg = 1

For that, in simulation, a closed corridor was constructed and it was concluded that there
would be at least three possibilities to create the reward function:

1. Reward function dependent only on the local position x; (regardless of the action used)

(Fig. [4.16).

Teward:{( 500 % 22) + 0.5 ifz; >= —0.09 V z; <= 0.09 (4

—10 else

2. Reward function dependent on the local position z; and the orientation #; regardless of

the action used (Fig. [4.17)).
reward = —500 * (27 + 0.0159 % 67) + 2 (4.5)
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3. Reward function where the result is the sum of the reward function 2 with the inclusion
of an action reward function depending on where the robot is in the corridor. This
reward function dependent on the action is similar to the one made before, where the
user gives some help choosing the best actions to take in a particular situation.

rewardFunction
B
T
1

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
X

Figure 4.16: Reward Function 1.

reward

Figure 4.17: Reward Function 2.
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When performing the learning process with the 9 actions (Fig. , and using the reward
function 1 and 2, there are situations where the robot can not find a solution to get out
of the state in which it is, as can be seen in Fig. With this information it would be
necessary to find a way to overcome this problem and the solution found was to add two more
actions to the existing ones: turn itself to the right and to the left. With the inclusion of these
two actions, it was possible to obtain results that were much better than those previously
obtained, and that the robot finally managed to learn cases that were previously impossible
to solve. However, the first two reward functions still had problems in certain cases and did
not converge to an optimal policy.

Figure 4.18: Proof of insufficient number of actions.

4.4.2 Corner

The corner is way harder to compute because there are three variables at stake: x, y and 0.
In the Fig. it is represented the transformation between the global and local positions
of the robot as well as the different sections. Each of these sections has a reward function.

xg =x;+0.15
0, =0+ g (4.6)
Yy =y + 1.7

Each section represented in the Fig. has a reward function to allow the robot to plan
is motion the best way possible in order to drive through the corner in a smooth way:

e Section 1 - This section still belongs to the corridor so reward function is equal to the
reward function 3 (Fig. 4.17)) depending on the local position z;, orientation 6; and the
action chosen.

e Section 2 - The robot has no interest in being in this corner zone so the reward function
is always negative and varies depending on its local position, x; and y; (Fig. |4.20]).

reward = —500  (z7 + y?) — 10 (4.7)
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e Section 3 - It is the section of interest to the trajectory of the robot, then the reward
function must be positive (Fig. 4.21)).
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Figure 4.21: Reward Function - Section 3.

reward = —750 * (z7 + (y; — 0.06)) + 7 (4.8)
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Chapter 5

Experiments and Results

This chapter describes the set of experiments conducted in order to train the mobile robot
to navigate in the maze environment. Table discriminates the experiments performed in
simulation from those carried out with the real robot, as well as the lower-level from the
higher-level. The discussion of the main results is presented at the end of each subsection.

Proposed Experiments Section
Corridors and Corners with manual reward 5.1.1
Corridors and Corners with automatic reward 5.1.2
Lower Right turn on a Door 5.2.1
Simulation | Level Left turn on a Door 5.2.2
Going forward on a Door 5.2.3
Learn the route to the goal

Learn the fastest route to the goal 5.3

Higher | State machine to learn the fastest route to the goal

Real Level Learning from scratch
Environment Transfer Learning 5.4
Transfer Learning and continuous learning

Table 5.1: Proposed Experiments

5.1 Simulations in “Corridors and Corners”

5.1.1 Manual Reward Function

The way a random action was chosen was a deliberated factor and to be able to compare
what would be the most correct method that would allow to update a greater number of
states, it was decided to use two different approaches. In the first one, the e-greedy method
was used with a constant probability value of ¢ = 0.1, and in the second one, the annealing
e-greedy algorithm with € = 1/log(iteration) was used, where in the beginning epsilon value is
near infinite, focusing the exploration, and as the number of iterations increases, the epsilon
reaches values near zero, increasing the exploitation. This also allows us to know the number
of iterations necessary for an acceptable learning in each case, since it may be possible, at
first, to use a large number of iterations without necessity.
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In order to visualize this particularity, one can use the Fig. [5.1] where it is noticed that the
number of states visited by the robot in the case of annealing e-greedy (112) is higher than
the case of e-greedy (103). In this first experiment, every 50000 iterations a new position was
chosen to begin with a different orientation. Consequently, the huge increase in the number of
states visited when the simulation reaches 100000 iterations since previously, the robot was
moving in the corridor in a clockwise direction and from that moment on, it started to move
in the counterclockwise direction.

In the Fig. it is possible to observe which the 10 most visited states during this learning
are. After the learning process it is possible to see the trajectory that the robot makes along
the map with access to the updated Q-Learning table (Fig. and to demonstrate if the
behavior of the robot is good, one can analyze the error of the position and orientation of the
robot in the beginning, middle and after the learning process is completed in the corridors
and in the corners, as shown in Figs. [5.4] and

It is possible to see that the robot has learned to perform a regular and smooth trajectory
through the corridors and corners, thus improving the behavior demonstrated in an initial
phase of learning obtaining a position and orientation error fairly low.

However, it is necessary to compare the results obtained with the use of the manual reward
function and the automatic reward function that will be addressed in the following subsection.

120 \ \ | |
100 — /—f—,— _
e .
i ——annealing e-greedy
’_Fp ——e-greedy
B 80 —
o L ‘ |
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2 ,—'
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0
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3 40 -
ﬁ—J
i
20 L —
0 1 1 1 | | 1 1
0 1 2 3 4 5 6 7 8
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Figure 5.1: Sub-task ”Corridor and corners” - states visited in function of the number of
iterations.
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Figure 5.3: Trajectory of the robot using the updated Q-learning table - ” Corridor and
corners”.
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5.1.2 Automatic Reward Function
Corridor

During the experimental phase, tests were performed with the three automatic reward func-
tions described in the previous chapter with regard to the corridor. The third reward function
proved to be the best one to solve the corridor even when the robot was facing the wall of
the corridor. In the Fig. it is possible to see that the reward function 3 allows the robot
to correct its behavior even in the worst initial situations.

Figure 5.6: Reward Function 3 - First and second episodes of the learning process.

Figure 5.7: Trajectory made by the robot after the learning process using the reward
function 3.

Fig. shows that the robot can find the path to navigate through a corridor, even facing
the wall initially after the learning process is completed.

61



The ten most visited states during the learning process can be seen in Fig. To demon-
strate if the behavior of the robot is good, one can analyze the error between the position of
the robot and the center of the corridor and the error between the orientation of the robot
and the desired orientation ( §; = 0) in the first and tenth episodes of the learning process and
after the learning is completed as can be seen in Fig. It is fair to say that the robot starts
to learn to go near the center of the corridor and almost parallel to the walls. Comparing
the position and orientation error graphs obtained with the automatic and manual reward
function with respect to the corridor represented respectively in Fig. 5.9 and Fig. it is
possible to conclude that the automatic function allows the robot to have a trajectory closer
to the center after learning.
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Figure 5.8: Number of times a state is visited - Corridor.
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Corner

After an iterative analysis of all the different positions and orientations present in the three
sections, all the states present in a corner have their corresponding reward and it is possible
to test the learning algorithm in the same way that was performed during the tests in the
corridor. This time, the eleven actions were used as in the last test done in the corridor, and
the results can be observed in the following figures [5.10] [5.11] and [5.13] The ten most visited
states during the learning process can be seen in Fig. [5.12

Analyzing the graphs of the error of the position and orientation in the case of a corner
using the automatic reward function, as shown in Fig. it is possible to conclude that
at the beginning the process is very time consuming until reaching the goal, however, as the
episodes pass the robot becomes able to complete its task quickly and smoothly. Compared
to the graphs of the error of the position and orientation using the manual reward function,
as shown in Fig. the robot does not need as many iterations at the beginning of learning
to reach its goal.

Figure 5.10: Corner - First and second episodes of the learning process (Direction 1).
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Figure 5.13: Corner - After the learning process.
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Figure 5.14: Error of the position and orientation of the robot with the automatic reward -
Corner.

5.2 Simulations in “Doors”

For each of the maps, learning was performed using the e-greedy algorithm (¢ = 0.1) and
annealing e-greedy (e = W). The beginning of each episode starts with the robot
in a random position at the entrance of the intersection and ends with the robot successfully
completing the objective.

5.2.1 Right turn on a door

In order to consider as many states as possible, the algorithm using the e-greedy approach was
first applied to the sub-task ”Right turn on a door” using the first map with 50 episodes to
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determine if this number of episodes was enough and the number of states visited would have
stabilized by then. Analyzing the Fig. .15 makes it possible to observe that after 50 episodes
the robot still needs more learning time, because the number of states visited is not constant.
Thus, the process was repeated for 100, 150, 200 and 300 episodes. In the same figure it is
possible to analyze that the number of states visited start to stabilize before reaching 300
episodes showing that that number of episodes is sufficient for the learning process of each
map. With the annealing e-greedy approach, the same strategy was used, and the same 300
episodes were sufficient, however, the experiment using the e-greedy approach allowed us to
update more states (126) than the annealing e-greedy (122). Throughout the three maps of
each sub-task, the Q-Learning table is reused, taking advantage of the update made in each
of the experiments, since it is normal for some states to be revisited. It is possible to find out
which ten states are the most visited during the learning in each map, which are probably
also the states that the robot visits the most after learning (Fig. [5.16} [C.1} |C.2] [C.3).

Then, it is also possible to analyze the error obtained between the trajectory performed
by the robot and a straight line in the center of each intersection, and in the case of this sub-
task, the reference trajectory makes an angle of 90 degrees in the middle of the intersection.
A comparison between the error obtained in the first episode, in the hundredth episode and
after learning shows the improvements throughout the learning process, where, in the first
episode the number of iterations to reach the objective is much higher than after the learning
is completed.

After the learning process was completed in each map, it is possible to use the Q-Learning
table of each to simulate the robot’s movement using the learning data. Therefore, it is possible
to observe, in the Fig. [5.20] the path made by the robot in each of the maps previously
described. As can be seen in the analysis of the images, it is possible to see that the learning
process was successful, however, if the movement of the robot in a certain state is not the
most correct one, the problem lies in the set of rewards given for this specific state.
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Figure 5.15: Sub-task “Right turn on a door” - states visited in function of the number of
episodes.
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Figure 5.20: Trajectory of the robot using the updated Q-learning table - “Right turn on a
door”.

5.2.2 Left turn on a door

All the tests performed in the ”Right turn on a door” sub-task were repeated for the ”Left
turn on a door” sub-task and the results are very similar. The analysis of the number of states
visited is shown in the figures [5.21] [5.22] [C.4] [C.5] and [C.6] The graphs of the error of the

position and orientation are presented in the figures [5.23] [5.24] and [5.25] and the trajectory
made by the robot after the learning is showed in the Fig. As can be seen in the analysis
of the images, it is possible to see that the learning process was successful.
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Figure 5.26: Trajectory of the robot using the updated Q-learning table -” Left turn on a
door”.

5.2.3 Going forward on a door

All the tests performed in the ”Right turn on a door” and ” Left turn on a door” sub-tasks were
repeated for the ”Going forward on a door” sub-task and the results are again very similar.
The analysis of the number of states visited is shown in the figures [5.27], [5.28] [C.7], [C.8] [C.9
The graphs of the error of the position and orientation are presented in the figures
and and the trajectory made by the robot after the learning is showed in the figure
When analyzing all the information previously presented it is possible to realize that
the robot learns to behave quickly and smoothly when it arrives at a door, always managing
to complete its goal, which is to return to a corridor.
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Figure 5.32: Trajectory of the robot using the updated Q-learning table - ” Going forward on
a door”.

5.3 Simulation of the Higher Level

The first method does not necessarily give the robot the fastest route to the goal, because
the reward function does not give the information about the iterations needed for the robot
to reach the end of a sub-task so as can be seen in the Table [5.2:

State\Option | o; (Go Forward) | oz (Turn right) | oz (Turn left)

S1 -0.0891 4.1091 -0.2143
S2 3.4693 -0.1791 -0.2999
S3 -0.2453 -0.4057 2.7613
S4 0.4492 -0.1889 -2.7100
S5 0.4379 -2.7100 -0.2243
S6 -1.9000 0.1441 -0.2104
S7 0 0 0

Table 5.2: Q-Learning table updated after the learning process using the first method.

For example, if the robot reaches the checkpoint 4, the option that would take him faster
to the goal would be turning right, however, the algorithm at the end of the learning process
selected the option “Go forward” (Fig. [5.33).

The second method proved to reach good results because the reward function depends
on the number of iterations needed to reach the goal. The Q-Learning table after learning is

presented below, Table

State\Option | o; (Go Forward) | oz (Turn right) | oz (Turn left)

S1 -0.8022 4.2214 -2.8231
S9 1.0362 -0.2619 -1.2581
S3 -0.9087 -1.4981 2.9764
S4 -1.5685 0.6021 -3.4380
S5 -0.8641 -5.2170 0.6751
S6 -1 -0.5960 -0.3927
87 0 0 0

Table 5.3: Q-Learning table updated after the learning process.
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Figure 5.33: Trajectory chosen not favoring the fastest path.

In the figure it is possible to observe that the robot, in the beginning of the learning
process, can not find the goal right away which is normal, considering it does not have any
information about the maze and how to reach the goal. Figure shows the behavior of the
agent, after having completed the learning process, where it can be verified that the agent
chooses the fastest way to reach the goal.

In order to understand the effect that the Q-Learning algorithm produces during learning,
it is possible to analyze the figure where the number of iterations and the reward sum as
a function of the number of the episode is presented. As the number of episodes increases, the
robot finds the way to the goal much faster, except for rare exceptions in which the method
of selecting the option to be taken, be it e-greedy or annealing e-greedy, chooses an action
that takes it away from the goal.

Figure 5.34: First and second episodes of the Hierarchical Reinforcement Learning process.
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Figure 5.35: Robot behavior after the Hierarchical Reinforcement Learning process.
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Figure 5.36: Number of iterations and reward sum as a function of the number of episodes.
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The method that uses the state machine gives the same results as the second method,
however, it converges way faster because it is not necessary to go through any learning in
the maze, which is what consumes the most time throughout the simulation, as the passage
between sub-tasks is not instantaneous. The Q-Learning Table obtained is presented in [5.4
where the option with the higher value in each of the states is the same as the one in the
Table [5.3] showing that the robot always opts for the fastest route to reach the goal.

State\Option | o; (Go Forward) | oz (Turn right) | oz (Turn left)

S1 -0.0562 5.9216 0.2812
S2 3.1497 -0.19 -0.1106
S3 -0.0195 0.0508 3.0011
S4 -0.0144 2.8626 -5.2170
S5 0.1354 -5.2170 3.1462
S6 -2.7100 -0.3094 -0.1000
s7 0 0 0

Table 5.4: Q-Learning table updated after the learning process using the state machine
approach.

If the table is completely updated, it is possible to join the two levels, the high level
and the low level. For test purposes, by placing the robot at a random position on the full
magze, it is possible to visualize that it finds the fastest route to reach the goal, going through
each of the sub-tasks using the corresponding Q-Learning table of each one (Fig. . This
shows that the division of the maze into sub-tasks allows an easier and quicker learning than
approaching the maze directly.

Figure 5.37: Trajectory made by the robot in the complete maze.
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5.4 Experiments in the Real Environment

The approach to the real environment was first done without any prior learning in simulation,
to see if it would be possible for the robot to learn in a short time to move in any of the
sub-tasks, however, this process was quickly discarded due to its slowness, as the robot was
constantly hitting the wall in the initial phase, having to be moved by hand every time that
happened.

So, the second option was to use transfer learning, passing the learning performed in
simulation directly to the real robot. This experiment used the data obtained using the first
version of the reward function created with the support of the user. When it was visible that
the robot behaved in a similar way to the behavior evidenced in simulation, it was understood
that the transfer learning method proved to be extremely viable. In the figures [5.38] [5.39] and
5.40| it is possible to observe the trajectory used by the robot beginning at random points of
the maze and using the information obtained during the learning performed in simulation.
As it can be seen, the robot already recognizes that it is at a checkpoint when it finds a bar
code on the floor. Taking into account the table the robot decides correctly which of the
sub-tasks it must choose in each moment, reaching the goal using the fastest route. The main
disadvantage of this technique is the fact that it can not solve situations where the robot is
very near the walls due to the nonexistence of actions to rotate on its own axis.

Figure 5.39: Second trajectory made by the robot in the complete real environment.
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Figure 5.40: Third trajectory made by the robot in the complete real environment.

Next, the same experiment was performed using the @ values table in the “Corridors and
Corners” sub-task obtained through the automatic reward function explained in the previous
chapter. It should be kept in mind that in this case, the number of actions is higher, 11
actions, than the number of actions previously used in this sub-task, 9 actions. However, the
remaining sub-tasks related to entering a port maintained the same learning tables. When
analyzing the trajectory of the robot starting from random positions of the maze is again
possible to confirm that it can reach the goal using the fastest possible route (Figs.
. This technique allows the robot never to hit the walls thanks to the two new actions
of rotating around itself, whereas in the previous case, if the robot ever hit a wall, it had
no possible action to get out of this situation. However, the movement of the robot in the
corners is not very smooth and sometimes the robot gets stuck between two states where the
action with the maximum Q value is to rotate to the left and to the right. This shows that
the reward function created for the corner needs to be thought in the future to give better
results. The main disadvantage of this technique is that if the action chosen by the robot on
the checkpoint is to rotate on its own axis, causing the reading of the bar code to fail, leading
to a wrong processing where another checkpoint can be read, or even a nonexistent one.

Figure 5.41: First trajectory made by the robot in the complete real environment using the
automatic reward function.
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Figure 5.42: Second trajectory made by the robot in the complete real environment using
the automatic reward function.

As the results obtained using only transfer learning were positive, the last task to be carried
out was an online learning based on the learning tables previously obtained in simulation. As
expected, the robot maintained the same behavior showing that it is possible to use transfer
learning in a problem of this sort, continuing the learning in the real environment.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the major contributions of this dissertation and discusses possible
developments for future work.

6.1 Conclusions and Contributions

This dissertation considered the navigation problem of a small-size omnidirectional mobile
robot in a maze-like environment. A HRL framework was implemented within a kinematics
simulation and visualization tool in order to validate the algorithms prior to implementation
in an Arduino-based physical platform. In order to define the robots state, the RL algorithm
uses six distance measurements supplied by infrared sensors that detect the surrounding maze
walls. Extensive experimental validation proves the validity and robustness of the hierarchical
approach and demonstrates the important role of the reward design.
The main contributions and limitations of this work can be summarized as follows:

e The robotic infrastructure proved to be adequate to the work, at the hardware and
software level. However, the communication module did not always respond correctly
throughout the experiments, having to be restarted occasionally, and the working fre-
quency could also be somewhat higher. The ROS architecture, despite being a very
powerful tool, was not used exhaustively because it was not part of the previous knowl-
edge obtained during the academic course, having served its purpose in an effective
way.

e The HRL approach introduced in this dissertation integrates ideas from the most well-
known frameworks. The hierarchical structure allowed a faster learning of a policy made
up of two levels so that the mobile robot can select to perform sequences of lower-level
actions. The results achieved, in a simulated and in a real robot, demonstrate the effec-
tiveness of the learning approach for mobile navigation in maze-like environments. In
this case, HRL proved to be a valid alternative to overcome some weaknesses of classical
RL, such as data and learning inefficiency. If the maze under study has a different layout
of the maze used during the experiments, first it is necessary to create a topological map
with the help of the checkpoints and to perform a high-level learning so that the robot
learns the best options to take in every moment of decision. If the measurements of the
corridors and doors are different from the ones used in this dissertation, the transfer of
the simulation results to the real environment may not be direct and some adjustments
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must be made in simulation. Throughout the experiments, objects were never placed
along the maze to know if the robot was able to overcome them, however, it is expected
that as the robot moves correctly down the maze it is also capable of not colliding with
any object.

e The experimental validation of the work in which the real mobile robot RLAN-bot
navigate through a maze to reach a goal is another contribution of this dissertation.
The ease with which the simulation results were directly transferred to the robot was,
perhaps, the most surprising aspect of the work, particularly because the simulated
model solely considers the kinematics of the task. Although some additional work is
required, this shows that different levels of hierarchy can involve different knowledge,
allowing for better transfer.

6.2 Future Work

There is a lot of work that can be improved since this topic is a very extensive and always
evolving case study. The perspectives of future work include both improvements to the work
done and new directions of investigation:

e To improve the communications between the mobile robot and the host computer to
increase the current baud rate and frequency.

e To consider the inclusion of a greater number of IR-sensors and their fusion with other
sensorial modalities.

e To compare the performance of the HRL approach with other formulations to evaluate
its added value in the context of robot navigation.

e To evaluate the advantages of other algorithms beyond Q-learning and the impact of
the hyper-parameters will also require additional efforts.

e Directions of future research can include the evaluation of the generalization capabilities
of the HRL approach (facing dynamic obstacles for example), the study of alternative
methods to design and/or learn the reward function (using IRL algorithms for exam-
ple), the integration of hierarchical and model learning methods and the exploration of
continuous state-action spaces through function approximation.
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Appendix A

Schematic of the Alphabot2-AR

10.

11.

Figure A.1: AlphaBot2-Base Schematic.

. Ultrasonic module interface

AlphaBot2 control interface

Obstacle avoidance indicators

Omni-direction wheel

Reflective infrared photoelectric sensor, ST188, for obstacle avoidance
Reflective infrared photoelectric sensor, ITR20001, for line tracking
Potenciometer for adjusting obstacle avoiding range

Dual H-bridge motor drive,TB6612FNG

Voltage comparator, LM393

N20 micro gear motor reduction rate 1:30 6V/600RPM

Rubber wheels, with a diameter of 42mm, and 19mm width
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12. Power switch
13. Battery holder, for 14500 batteries
14. WS2812B: LEDs RGB

15. Power Indicator

WaveShare

Mobile robot platform

Figure A.2: AlphaBot2-Ar Schematic.

1. AlphaBot2 control interface to connect to AlphaBot2-Base
2. Arduino expansion header
3. Arduino interface to connect a compatible Arduino controller
4. XBee connector
5. IR receiver
6. PC8574: 1/O expander, SPI interface
7. Arduino peripheral jumpers
8. TLC1543: 10-bit AD acquisition chip
9. Buzzer
10. 0.96inch OLED SSD1306 driver, 128x64 resolution

11. Joystick
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Appendix B

Final Version of the PCB

ARDUINO_CONM-I0_HSIPT_JP3
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Figure B.1: Final version of the PCB.
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Appendix C

States Visited

41 Lq2 Ls Ql_ 14 - —s b

Q 0 0!

] Gr—‘ [ 1 . —

—6 “—47 T4 49 = 0 -
Q

B O‘r- O - O T — 1O [

Figure C.1: States visited - Right turn on a door - Map 1.
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Figure C.2: States visited - Right turn on a door - Map 2.
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Figure C.4: States visited - Left turn on a door - Map 1.
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Figure C.5: States visited - Left turn on a door - Map 2.
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1 I_ le__l3 L o L _]b L
B . r O 1O 11 r
_1? L .IB I.._lg :_,110:
© O O O
L r ‘|0r 1 r e

Figure C.7: States visited - Going Forward on a door - Map 1.
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Figure C.8: States visited - Going Forward on a door - Map 2.
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Figure C.9: States visited - Going Forward on a door - Map 3.
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